Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Biosensors (Basel). 2023 May 16;13(5):551. doi: 10.3390/bios13050551.
To highlight the particular needs with respect to modeling the unique and complex organization of the human brain structure, we reviewed the state-of-the-art in devising brain models with engineered instructive microenvironments. To acquire a better perspective on the brain's working mechanisms, we first summarize the importance of regional stiffness gradients in brain tissue, varying per layer and the cellular diversities of the layers. Through this, one can acquire an understanding of the essential parameters in emulating the brain in vitro. In addition to the brain's organizational architecture, we addressed also how the mechanical properties have an impact on neuronal cell responses. In this respect, advanced in vitro platforms emerged and profoundly changed the methods of brain modeling efforts from the past, mainly focusing on animal or cell line research. The main challenges in imitating features of the brain in a dish are with regard to composition and functionality. In neurobiological research, there are now methods that aim to cope with such challenges by the self-assembly of human-derived pluripotent stem cells (hPSCs), i.e., brainoids. Alternatively, these brainoids can be used stand-alone or in conjunction with Brain-on-Chip (BoC) platform technology, 3D-printed gels, and other types of engineered guidance features. Currently, advanced in vitro methods have made a giant leap forward regarding cost-effectiveness, ease-of-use, and availability. We bring these recent developments together into one review. We believe our conclusions will give a novel perspective towards advancing instructive microenvironments for BoCs and the understanding of the brain's cellular functions either in modeling healthy or diseased states of the brain.
为了突出在构建人类大脑结构独特且复杂的组织模型方面的特殊需求,我们回顾了设计具有工程指导性微环境的大脑模型的最新技术进展。为了更好地了解大脑的工作机制,我们首先总结了脑组织中局部硬度梯度的重要性,这种梯度因层而异,且每层的细胞多样性也不同。通过这种方式,可以更好地理解体外模拟大脑的基本参数。除了大脑的组织结构,我们还讨论了机械性能如何对神经元细胞反应产生影响。在这方面,先进的体外平台应运而生,并从根本上改变了过去的大脑建模方法,主要集中在动物或细胞系研究上。在体外模拟大脑特征方面的主要挑战在于成分和功能。在神经生物学研究中,现在有一些方法旨在通过人类多能干细胞(hPSC)的自组装来应对这些挑战,即脑类器官。或者,这些脑类器官可以单独使用,也可以与脑器官芯片(BoC)平台技术、3D 打印凝胶和其他类型的工程导向特征结合使用。目前,先进的体外方法在成本效益、易用性和可用性方面取得了巨大飞跃。我们将这些最新的发展结合在一篇综述中。我们相信,我们的结论将为推进 BoC 的指导性微环境以及理解大脑在健康或疾病状态下的细胞功能提供新的视角。
Biosensors (Basel). 2023-5-16
Biosens Bioelectron. 2023-4-1
Exp Biol Med (Maywood). 2017-11
Tissue Barriers. 2016-1-28
Micromachines (Basel). 2021-1-24
Adv Exp Med Biol. 2024
Ann Med Surg (Lond). 2024-4-16
Adv Sci (Weinh). 2023-4
Trends Biotechnol. 2023-3
Front Bioeng Biotechnol. 2022-12-14
Colloids Surf B Biointerfaces. 2023-2
Pharmaceutics. 2022-10-26
Front Behav Neurosci. 2022-4-21
Front Toxicol. 2022-1-27