文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微环境很重要:脑芯片的新进展。

Microenvironments Matter: Advances in Brain-on-Chip.

机构信息

Neuro-Nanoscale Engineering, Department of Mechanical Engineering/Microsystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

出版信息

Biosensors (Basel). 2023 May 16;13(5):551. doi: 10.3390/bios13050551.


DOI:10.3390/bios13050551
PMID:37232912
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10216565/
Abstract

To highlight the particular needs with respect to modeling the unique and complex organization of the human brain structure, we reviewed the state-of-the-art in devising brain models with engineered instructive microenvironments. To acquire a better perspective on the brain's working mechanisms, we first summarize the importance of regional stiffness gradients in brain tissue, varying per layer and the cellular diversities of the layers. Through this, one can acquire an understanding of the essential parameters in emulating the brain in vitro. In addition to the brain's organizational architecture, we addressed also how the mechanical properties have an impact on neuronal cell responses. In this respect, advanced in vitro platforms emerged and profoundly changed the methods of brain modeling efforts from the past, mainly focusing on animal or cell line research. The main challenges in imitating features of the brain in a dish are with regard to composition and functionality. In neurobiological research, there are now methods that aim to cope with such challenges by the self-assembly of human-derived pluripotent stem cells (hPSCs), i.e., brainoids. Alternatively, these brainoids can be used stand-alone or in conjunction with Brain-on-Chip (BoC) platform technology, 3D-printed gels, and other types of engineered guidance features. Currently, advanced in vitro methods have made a giant leap forward regarding cost-effectiveness, ease-of-use, and availability. We bring these recent developments together into one review. We believe our conclusions will give a novel perspective towards advancing instructive microenvironments for BoCs and the understanding of the brain's cellular functions either in modeling healthy or diseased states of the brain.

摘要

为了突出在构建人类大脑结构独特且复杂的组织模型方面的特殊需求,我们回顾了设计具有工程指导性微环境的大脑模型的最新技术进展。为了更好地了解大脑的工作机制,我们首先总结了脑组织中局部硬度梯度的重要性,这种梯度因层而异,且每层的细胞多样性也不同。通过这种方式,可以更好地理解体外模拟大脑的基本参数。除了大脑的组织结构,我们还讨论了机械性能如何对神经元细胞反应产生影响。在这方面,先进的体外平台应运而生,并从根本上改变了过去的大脑建模方法,主要集中在动物或细胞系研究上。在体外模拟大脑特征方面的主要挑战在于成分和功能。在神经生物学研究中,现在有一些方法旨在通过人类多能干细胞(hPSC)的自组装来应对这些挑战,即脑类器官。或者,这些脑类器官可以单独使用,也可以与脑器官芯片(BoC)平台技术、3D 打印凝胶和其他类型的工程导向特征结合使用。目前,先进的体外方法在成本效益、易用性和可用性方面取得了巨大飞跃。我们将这些最新的发展结合在一篇综述中。我们相信,我们的结论将为推进 BoC 的指导性微环境以及理解大脑在健康或疾病状态下的细胞功能提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/eb2ce9619c67/biosensors-13-00551-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/3fa838c2c161/biosensors-13-00551-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/791177433428/biosensors-13-00551-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/815dcde9c316/biosensors-13-00551-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/ee8f1062d1ad/biosensors-13-00551-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/3a62136ed542/biosensors-13-00551-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/e5db93d76d72/biosensors-13-00551-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/08bf73b5c2e8/biosensors-13-00551-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/180d888adcde/biosensors-13-00551-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/15bbe90191de/biosensors-13-00551-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/a86fa4aa3fd6/biosensors-13-00551-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/77d5dfe1b5dc/biosensors-13-00551-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/71b404af7c66/biosensors-13-00551-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/a2df782cee93/biosensors-13-00551-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/c52fa522157e/biosensors-13-00551-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/a1ee234094e7/biosensors-13-00551-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/1510987d17f0/biosensors-13-00551-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/62d8774c84d4/biosensors-13-00551-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/2d58a9fa0d89/biosensors-13-00551-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/1386dbccc9ac/biosensors-13-00551-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/b6db3aa1ebb0/biosensors-13-00551-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/1c288ba7e5f5/biosensors-13-00551-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/eb2ce9619c67/biosensors-13-00551-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/3fa838c2c161/biosensors-13-00551-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/791177433428/biosensors-13-00551-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/815dcde9c316/biosensors-13-00551-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/ee8f1062d1ad/biosensors-13-00551-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/3a62136ed542/biosensors-13-00551-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/e5db93d76d72/biosensors-13-00551-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/08bf73b5c2e8/biosensors-13-00551-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/180d888adcde/biosensors-13-00551-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/15bbe90191de/biosensors-13-00551-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/a86fa4aa3fd6/biosensors-13-00551-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/77d5dfe1b5dc/biosensors-13-00551-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/71b404af7c66/biosensors-13-00551-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/a2df782cee93/biosensors-13-00551-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/c52fa522157e/biosensors-13-00551-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/a1ee234094e7/biosensors-13-00551-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/1510987d17f0/biosensors-13-00551-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/62d8774c84d4/biosensors-13-00551-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/2d58a9fa0d89/biosensors-13-00551-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/1386dbccc9ac/biosensors-13-00551-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/b6db3aa1ebb0/biosensors-13-00551-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/1c288ba7e5f5/biosensors-13-00551-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d2/10216565/eb2ce9619c67/biosensors-13-00551-g022.jpg

相似文献

[1]
Microenvironments Matter: Advances in Brain-on-Chip.

Biosensors (Basel). 2023-5-16

[2]
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation.

Biosens Bioelectron. 2023-4-1

[3]
Next generation human skin constructs as advanced tools for drug development.

Exp Biol Med (Maywood). 2017-11

[4]
Brain-on-a-Chip: Characterizing the next generation of advanced platforms for modeling the central nervous system.

APL Bioeng. 2021-7-30

[5]
Microfluidic organ-on-chip technology for blood-brain barrier research.

Tissue Barriers. 2016-1-28

[6]
Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.

Exp Biol Med (Maywood). 2017-10

[7]
Recent progress in translational engineered in vitro models of the central nervous system.

Brain. 2020-12-5

[8]
Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip.

Talanta. 2021-5-1

[9]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[10]
Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology.

Micromachines (Basel). 2021-1-24

引用本文的文献

[1]
Mechanodynamic brain on chip for studying human stem cell derived neuronal networks.

Sci Rep. 2025-8-13

[2]
The rise of 3D bioprinting advancements in modeling neurodegenerative diseases.

Ibrain. 2025-4-22

[3]
From Molecules to Mind: The Critical Role of Chitosan, Collagen, Alginate, and Other Biopolymers in Neuroprotection and Neurodegeneration.

Molecules. 2025-2-22

[4]
Navigating the Intersection of Technology and Depression Precision Medicine.

Adv Exp Med Biol. 2024

[5]
Tailoring epilepsy treatment: personalized micro-physiological systems illuminate individual drug responses.

Ann Med Surg (Lond). 2024-4-16

本文引用的文献

[1]
3D In Vitro Blood-Brain-Barrier Model for Investigating Barrier Insults.

Adv Sci (Weinh). 2023-4

[2]
Organs-on-a-chip: a union of tissue engineering and microfabrication.

Trends Biotechnol. 2023-3

[3]
Engineered cell culture microenvironments for mechanobiology studies of brain neural cells.

Front Bioeng Biotechnol. 2022-12-14

[4]
Topographical cues of PLGA membranes modulate the behavior of hMSCs, myoblasts and neuronal cells.

Colloids Surf B Biointerfaces. 2023-2

[5]
Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications.

Pharmaceutics. 2022-10-26

[6]
A Human Stem Cell-Derived Brain-Liver Chip for Assessing Blood-Brain-Barrier Permeation of Pharmaceutical Drugs.

Cells. 2022-10-19

[7]
Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system.

RSC Adv. 2018-1-5

[8]
Ten Points to Improve Reproducibility and Translation of Animal Research.

Front Behav Neurosci. 2022-4-21

[9]
The Future of 3D Brain Cultures in Developmental Neurotoxicity Testing.

Front Toxicol. 2022-1-27

[10]
Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization.

STAR Protoc. 2022-3-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索