National Research Council of Italy, Institute on Membrane Technology, CNR-ITM, Cubo 17, C via P. Bucci, 87036 Rende, CS, Italy.
National Research Council of Italy, Institute on Membrane Technology, CNR-ITM, Cubo 17, C via P. Bucci, 87036 Rende, CS, Italy.
Colloids Surf B Biointerfaces. 2023 Feb;222:113070. doi: 10.1016/j.colsurfb.2022.113070. Epub 2022 Dec 5.
Biomaterial surface modification through the introduction of defined and repeated patterns of topography helps study cell behavior in response to defined geometrical cues. The lithographic molding technique is widely used for conferring biomaterial surface microscale cues and enhancing the performance of biomedical devices. In this work, different master molds made by UV mask lithography were used to prepare poly (D,L-lactide-co-glycolide) - PLGA micropatterned membranes to present different features of topography at the cellular interface: channels, circular pillars, rectangular pillars, and pits. The effects of geometrical cues were investigated on different cell sources, such as neuronal cells, myoblasts, and stem cells. Morphological evaluation revealed a peculiar cell arrangement in response to a specific topographical stimulus sensed over the membrane surface. Cells seeded on linear-grooved membranes showed that this cue promoted elongated cell morphology. Rectangular and circular pillars act instead as discontinuous cues at the cell-membrane interface, inducing cell growth in multiple directions. The array of pits over the surface also highlighted the precise spatiotemporal organization of the cell; they grew between the interconnected membrane space within the pits, avoiding the microscale hole. The overall approach allowed the evaluation of the responses of different cell types adhered to various surface patterns, build-up on the same polymeric membrane, and disclosing the effect of specific topographical features. We explored how various microtopographic signals play distinct roles in different cells, thus affecting cell adhesion, migration, differentiation, cell-cell interactions, and other metabolic activities.
通过引入具有明确和重复特征的形貌图案,生物材料表面改性有助于研究细胞对特定几何线索的反应行为。光刻成型技术广泛用于赋予生物材料表面微观形貌特征,并提高生物医学设备的性能。在这项工作中,使用不同的 UV 掩模光刻制作的母模来制备聚(D,L-丙交酯-共-乙交酯)-PLGA 微图案化膜,以在细胞界面呈现不同形貌特征:通道、圆形支柱、矩形支柱和凹坑。研究了几何线索对不同细胞源的影响,如神经元细胞、成肌细胞和干细胞。形态学评估揭示了细胞在响应膜表面感知到的特定形貌刺激时的特殊排列方式。在具有线性凹槽的膜上接种的细胞表明,这种线索促进了细胞的伸长形态。而矩形和圆形支柱则作为细胞膜界面上的不连续线索,诱导细胞向多个方向生长。表面上的凹坑阵列也突出了细胞的精确时空组织;它们在凹坑内相互连接的膜空间之间生长,避免了微尺度孔。总的来说,这种方法允许评估不同类型的细胞对各种表面图案的反应,这些图案建立在相同的聚合物膜上,并揭示特定形貌特征的影响。我们探索了不同的微形貌信号如何在不同的细胞中发挥不同的作用,从而影响细胞的黏附、迁移、分化、细胞间相互作用和其他代谢活动。