文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于研究人类干细胞衍生神经网络的芯片上机械动力脑

Mechanodynamic brain on chip for studying human stem cell derived neuronal networks.

作者信息

Akcay Gulden, Luttge Regina

机构信息

Neuro-Nanoscale Engineering, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands.

Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands.

出版信息

Sci Rep. 2025 Aug 13;15(1):29631. doi: 10.1038/s41598-025-14187-6.


DOI:10.1038/s41598-025-14187-6
PMID:40804068
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12350671/
Abstract

Brain tissue orchestrates neuronal function through biochemical and mechanical cues. Utilizing in vitro modeling, often the dynamics of mechanical aspects in neuronal cell cultures is neglected. However, the growing recognition of the importance of mechanical cues in neural development and healthy brain function necessitates a shift in how we study cultured neurons. Microfluidic platforms, like a Brain-on-Chip (BoC), can take active mechanical stimuli into account. In our BoC design a set of microchannels manufactured in a glass substrate by FEMTOprint technology is assembled with a spin-coated polydimethylsiloxane (PDMS) membrane and a PDMS culture chamber, which was fabricated from a stereolithographically made mold by replication. The membrane can locally deform across the culture chamber by air pressure. This paper describes the design, fabrication and test of such a novel BoC, offering an experimental setting in which we demonstrated mechano-dynamic elevated Calcium signaling in cultured human induced neural stem cell-derived neuronal networks.

摘要

脑组织通过生化和机械信号协调神经元功能。在体外建模中,神经元细胞培养中机械方面的动态变化常常被忽视。然而,随着人们越来越认识到机械信号在神经发育和健康脑功能中的重要性,我们研究培养神经元的方式需要转变。微流控平台,如芯片大脑(BoC),可以考虑主动机械刺激。在我们的BoC设计中,一组通过飞秒打印技术在玻璃基板上制造的微通道与旋涂聚二甲基硅氧烷(PDMS)膜和PDMS培养室组装在一起,该培养室是通过复制立体光刻制作的模具制造的。该膜可通过气压在培养室中局部变形。本文描述了这种新型BoC的设计、制造和测试,提供了一个实验环境,我们在其中展示了培养的人诱导神经干细胞衍生的神经元网络中机械动态升高的钙信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/33b393999b41/41598_2025_14187_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/b3a0fe741228/41598_2025_14187_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/229cb0f7c6d3/41598_2025_14187_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/8c8c5795c8ff/41598_2025_14187_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/c0a67ef99561/41598_2025_14187_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/d41a7394f23c/41598_2025_14187_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/b59d067063b3/41598_2025_14187_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/edc6325f4e4a/41598_2025_14187_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/57153b936fe9/41598_2025_14187_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/c55c5cbd0ecb/41598_2025_14187_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/6b5d1fbc1d53/41598_2025_14187_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/91409bc60bfb/41598_2025_14187_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/521b9e212977/41598_2025_14187_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/3bef90d274fa/41598_2025_14187_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/33b393999b41/41598_2025_14187_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/b3a0fe741228/41598_2025_14187_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/229cb0f7c6d3/41598_2025_14187_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/8c8c5795c8ff/41598_2025_14187_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/c0a67ef99561/41598_2025_14187_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/d41a7394f23c/41598_2025_14187_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/b59d067063b3/41598_2025_14187_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/edc6325f4e4a/41598_2025_14187_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/57153b936fe9/41598_2025_14187_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/c55c5cbd0ecb/41598_2025_14187_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/6b5d1fbc1d53/41598_2025_14187_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/91409bc60bfb/41598_2025_14187_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/521b9e212977/41598_2025_14187_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/3bef90d274fa/41598_2025_14187_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/12350671/33b393999b41/41598_2025_14187_Fig14_HTML.jpg

相似文献

[1]
Mechanodynamic brain on chip for studying human stem cell derived neuronal networks.

Sci Rep. 2025-8-13

[2]
Crafting Precision: Design and Fabrication of a Xurography-Driven Microfluidic Platform for Exploring Neuron Culture and Targeted Drug Screening.

ACS Chem Neurosci. 2025-8-6

[3]
Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study.

Hum Reprod. 2025-1-1

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level.

Integr Biol (Camb). 2024-1-23

[6]
Enhanced neuromorphogenesis of neural stem cells via the optimization of physical stimulus-responsive signaling pathways.

Stem Cell Res Ther. 2025-7-18

[7]
Three-dimensional human neural culture on a chip recapitulating neuroinflammation and neurodegeneration.

Nat Protoc. 2023-9

[8]
A comprehensive protocol for efficient differentiation of human NPCs into electrically competent neurons.

J Neurosci Methods. 2024-10

[9]
Short-Term Memory Impairment

2025-1

[10]
Cestode larvae excite host neuronal circuits via glutamatergic signalling.

Elife. 2025-7-4

本文引用的文献

[1]
Assessing Drug Uptake and Response Differences in 2D and 3D Cellular Environments Using Stimulated Raman Scattering Microscopy.

Anal Chem. 2024-9-10

[2]
Synapses without tension fail to fire in an in vitro network of hippocampal neurons.

Proc Natl Acad Sci U S A. 2023-12-26

[3]
Theta Burst Stimulation of the Human Motor Cortex Modulates Secondary Hyperalgesia to Punctate Mechanical Stimuli.

Neuromodulation. 2024-7

[4]
Characterization of neural mechanotransduction response in human traumatic brain injury organoid model.

Sci Rep. 2023-8-19

[5]
Microenvironments Matter: Advances in Brain-on-Chip.

Biosensors (Basel). 2023-5-16

[6]
Mechanical regulation of synapse formation and plasticity.

Semin Cell Dev Biol. 2023-5-15

[7]
Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.

Front Bioeng Biotechnol. 2022-4-19

[8]
Multiscale Mechanobiology in Brain Physiology and Diseases.

Front Cell Dev Biol. 2022-3-28

[9]
The revolution of PDMS microfluidics in cellular biology.

Crit Rev Biotechnol. 2023-5

[10]
Review of Noninvasive or Minimally Invasive Deep Brain Stimulation.

Front Behav Neurosci. 2022-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索