文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于放射组学的人工智能系统在食管癌诊断、预测治疗反应和生存中的性能:诊断准确性的系统评价和荟萃分析。

Performance of radiomics-based artificial intelligence systems in the diagnosis and prediction of treatment response and survival in esophageal cancer: a systematic review and meta-analysis of diagnostic accuracy.

机构信息

Department of General Surgery, Oxford University Hospitals, Oxford, UK.

Department of General Surgery, University of Witwatersrand, Johannesburg, South Africa.

出版信息

Dis Esophagus. 2023 May 27;36(6). doi: 10.1093/dote/doad034.


DOI:10.1093/dote/doad034
PMID:37236811
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10789236/
Abstract

Radiomics can interpret radiological images with more detail and in less time compared to the human eye. Some challenges in managing esophageal cancer can be addressed by incorporating radiomics into image interpretation, treatment planning, and predicting response and survival. This systematic review and meta-analysis provides a summary of the evidence of radiomics in esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE, and Ovid EMBASE databases-articles describing radiomics in esophageal cancer were included. A meta-analysis was also performed; 50 studies were included. For the assessment of treatment response using 18F-FDG PET/computed tomography (CT) scans, seven studies (443 patients) were included in the meta-analysis. The pooled sensitivity and specificity were 86.5% (81.1-90.6) and 87.1% (78.0-92.8). For the assessment of treatment response using CT scans, five studies (625 patients) were included in the meta-analysis, with a pooled sensitivity and specificity of 86.7% (81.4-90.7) and 76.1% (69.9-81.4). The remaining 37 studies formed the qualitative review, discussing radiomics in diagnosis, radiotherapy planning, and survival prediction. This review explores the wide-ranging possibilities of radiomics in esophageal cancer management. The sensitivities of 18F-FDG PET/CT scans and CT scans are comparable, but 18F-FDG PET/CT scans have improved specificity for AI-based prediction of treatment response. Models integrating clinical and radiomic features facilitate diagnosis and survival prediction. More research is required into comparing models and conducting large-scale studies to build a robust evidence base.

摘要

与肉眼相比,放射组学可以更详细、更快速地解读放射影像。将放射组学纳入图像解读、治疗计划以及预测反应和生存,有助于解决食管癌管理中的一些挑战。本系统评价和荟萃分析总结了放射组学在食管癌中的应用证据。系统评价检索了 Pubmed、MEDLINE 和 Ovid EMBASE 数据库,纳入了描述食管癌放射组学的文章。还进行了荟萃分析,共纳入 50 项研究。有 7 项研究(443 例患者)纳入了 18F-FDG PET/CT 扫描评估治疗反应的荟萃分析,汇总的敏感度和特异度分别为 86.5%(81.1-90.6)和 87.1%(78.0-92.8)。有 5 项研究(625 例患者)纳入了 CT 扫描评估治疗反应的荟萃分析,汇总的敏感度和特异度分别为 86.7%(81.4-90.7)和 76.1%(69.9-81.4)。其余 37 项研究进行了定性综述,讨论了放射组学在诊断、放疗计划和生存预测方面的应用。本综述探讨了放射组学在食管癌管理中的广泛应用前景。18F-FDG PET/CT 扫描和 CT 扫描的敏感度相当,但基于 AI 的 18F-FDG PET/CT 扫描预测治疗反应的特异度更高。整合临床和放射组学特征的模型有助于诊断和生存预测。需要进一步开展比较模型和进行大规模研究,以构建稳健的证据基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/cf8e54aff2b4/doad034f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/c36a058a9df1/doad034f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/384a8ad74d65/doad034f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/f88c161e12ca/doad034f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/7c895cb5db18/doad034f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/cf8e54aff2b4/doad034f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/c36a058a9df1/doad034f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/384a8ad74d65/doad034f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/f88c161e12ca/doad034f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/7c895cb5db18/doad034f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce3/10789236/cf8e54aff2b4/doad034f5.jpg

相似文献

[1]
Performance of radiomics-based artificial intelligence systems in the diagnosis and prediction of treatment response and survival in esophageal cancer: a systematic review and meta-analysis of diagnostic accuracy.

Dis Esophagus. 2023-5-27

[2]
Detection of distant interval metastases after neoadjuvant therapy for esophageal cancer with 18F-FDG PET(/CT): a systematic review and meta-analysis.

Dis Esophagus. 2018-12-1

[3]
Diagnostic Performance of ¹⁸F-FDG PET and PET/CT for the Detection of Recurrent Esophageal Cancer After Treatment with Curative Intent: A Systematic Review and Meta-Analysis.

J Nucl Med. 2015-5-7

[4]
Radiomics diagnostic performance for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis.

BMC Med Imaging. 2024-6-12

[5]
Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR.

Med Phys. 2019-2-22

[6]
Radiomics for the Prediction of Treatment Outcome and Survival in Patients With Colorectal Cancer: A Systematic Review.

Clin Colorectal Cancer. 2021-3

[7]
Limited additional value of cervical ultrasonography over a negative 18F-FDG PET/CT for diagnosing cervical lymph node metastases in patients with esophageal cancer: a systematic review and meta-analysis.

Nucl Med Commun. 2018-7

[8]
Advances in the Imaging of Esophageal and Gastroesophageal Junction Malignancies.

Hematol Oncol Clin North Am. 2024-6

[9]
Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images.

Ann Nucl Med. 2021-4

[10]
Diffusion-weighted MRI and F-FDG PET/CT in assessing the response to neoadjuvant chemoradiotherapy in locally advanced esophageal squamous cell carcinoma.

Radiat Oncol. 2021-7-19

引用本文的文献

[1]
Explanation and Elaboration with Examples for METRICS (METRICS-E3): an initiative from the EuSoMII Radiomics Auditing Group.

Insights Imaging. 2025-8-13

[2]
18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Med Oncol. 2025-8-11

[3]
Research status and progress of deep learning in automatic esophageal cancer detection.

World J Gastrointest Oncol. 2025-5-15

[4]
PSMA PET/CT for prostate cancer diagnosis: current applications and future directions.

J Cancer Res Clin Oncol. 2025-5-4

[5]
Radiomics in Oesogastric Cancer: Staging and Prediction of Preoperative Treatment Response: A Narrative Review and the Results of Personal Experience.

Cancers (Basel). 2024-7-26

[6]
Radiomics-clinical nomogram for preoperative lymph node metastasis prediction in esophageal carcinoma.

Br J Radiol. 2024-2-28

本文引用的文献

[1]
Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures.

Radiat Oncol. 2022-12-27

[2]
Deep Learning for Automated Contouring of Gross Tumor Volumes in Esophageal Cancer.

Front Oncol. 2022-7-18

[3]
Radiomic assessment of oesophageal adenocarcinoma: a critical review of 18F-FDG PET/CT, PET/MRI and CT.

Insights Imaging. 2022-6-17

[4]
Scoping out the future: The application of artificial intelligence to gastrointestinal endoscopy.

World J Gastrointest Oncol. 2022-5-15

[5]
18F-FDG PET Radiomics as Predictor of Treatment Response in Oesophageal Cancer: A Systematic Review and Meta-Analysis.

Front Oncol. 2022-3-15

[6]
A Deep Learning Radiomics Analysis for Survival Prediction in Esophageal Cancer.

J Healthc Eng. 2022

[7]
Diagnostic Performance of Artificial Intelligence-Centred Systems in the Diagnosis and Postoperative Surveillance of Upper Gastrointestinal Malignancies Using Computed Tomography Imaging: A Systematic Review and Meta-Analysis of Diagnostic Accuracy.

Ann Surg Oncol. 2022-3

[8]
Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive Radiomic biomarkers.

BMC Cancer. 2021-10-30

[9]
Detection of Incidental Esophageal Cancers on Chest CT by Deep Learning.

Front Oncol. 2021-9-16

[10]
Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning.

Technol Cancer Res Treat. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索