Andreucci Carlos Aurelio, Fonseca Elza M M, Jorge Renato N
Mechanical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias 712, 4200-465 Porto, Portugal.
LAETA, INEGI, ISEP, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
Bioengineering (Basel). 2023 Apr 23;10(5):505. doi: 10.3390/bioengineering10050505.
Oral maxillofacial rehabilitation of the atrophic maxilla with or without pneumatization of the maxillary sinuses routinely presents limited bone availability. This indicates the need for vertical and horizontal bone augmentation. The standard and most used technique is maxillary sinus augmentation using distinct techniques. These techniques may or may not rupture the sinus membrane. Rupture of the sinus membrane increases the risk of acute or chronic contamination of the graft, implant, and maxillary sinus. The surgical procedure for maxillary sinus autograft involves two stages: removal of the autograft and preparation of the bone site for the graft. A third stage is often added to place the osseointegrated implants. This is because it was not possible to do this at the same time as the graft surgery. A new bioactive kinetic screw (BKS) bone implant model is presented that simplifies and effectively performs autogenous grafting, sinus augmentation, and implant fixation in a single step. In the absence of a minimum vertical bone height of 4 mm in the region to be implanted, an additional surgical procedure is performed to harvest bone from the retro-molar trigone region of the mandible to provide additional bone. The feasibility and simplicity of the proposed technique were demonstrated in experimental studies in synthetic maxillary bone and sinus. A digital torque meter was used to measure MIT and MRT during implant insertion and removal. The amount of bone graft was determined by weighing the bone material collected by the new BKS implant. The technique proposed here demonstrated the benefits and limitations of the new BKS implant for maxillary sinus augmentation and installation of dental implants simultaneously.
上颌窦有无气化的萎缩性上颌骨的口腔颌面修复通常面临骨量有限的问题。这表明需要进行垂直和水平骨增量。标准且最常用的技术是采用不同方法进行上颌窦提升。这些方法可能会也可能不会使窦膜破裂。窦膜破裂会增加移植物、种植体和上颌窦急性或慢性污染的风险。上颌窦自体骨移植手术包括两个阶段:取出自体骨以及为移植准备骨床。通常还会增加第三个阶段来植入骨整合种植体。这是因为在移植手术时无法同时进行种植。本文介绍了一种新型生物活性动力螺钉(BKS)骨植入模型,该模型可在一步操作中简化并有效完成自体骨移植、窦提升和种植体固定。在待植入区域垂直骨高度不足4毫米的情况下,需额外进行手术,从下颌磨牙后三角区获取骨组织以提供额外的骨量。所提出技术的可行性和简便性在合成上颌骨和窦的实验研究中得到了验证。在种植体植入和取出过程中,使用数字扭矩计测量植入扭矩(MIT)和取出扭矩(MRT)。通过称量新型BKS植入体收集的骨材料来确定骨移植量。本文提出的技术展示了新型BKS植入体在上颌窦提升和同时安装牙种植体方面的优点和局限性。