Suppr超能文献

通过机器学习算法利用智能手机惯性传感器估算立定跳远长度。

Estimating the Standing Long Jump Length from Smartphone Inertial Sensors through Machine Learning Algorithms.

作者信息

De Lazzari Beatrice, Mascia Guido, Vannozzi Giuseppe, Camomilla Valentina

机构信息

Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, Lazio, 00135 Roma, Italy.

Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, Lazio, 00135 Roma, Italy.

出版信息

Bioengineering (Basel). 2023 Apr 29;10(5):546. doi: 10.3390/bioengineering10050546.

Abstract

The length of the standing long jump (SLJ) is widely recognized as an indicator of developmental motor competence or sports conditional performance. This work aims at defining a methodology to allow athletes/coaches to easily measure it using the inertial measurement units embedded on a smartphone. A sample group of 114 trained young participants was recruited and asked to perform the instrumented SLJ task. A set of features was identified based on biomechanical knowledge, then Lasso regression allowed the identification of a subset of predictors of the SLJ length that was used as input of different optimized machine learning architectures. Results obtained from the use of the proposed configuration allow an estimate of the SLJ length with a Gaussian Process Regression model with a RMSE of 0.122 m in the test phase, Kendall's τ < 0.1. The proposed models give homoscedastic results, meaning that the error of the models does not depend on the estimated quantity. This study proved the feasibility of using low-cost smartphone sensors to provide an automatic and objective estimate of SLJ performance in ecological settings.

摘要

立定跳远(SLJ)的长度被广泛认为是发育性运动能力或运动条件表现的一个指标。这项工作旨在定义一种方法,使运动员/教练能够使用智能手机中嵌入的惯性测量单元轻松测量立定跳远长度。招募了一组114名经过训练的年轻参与者,并要求他们执行仪器化的立定跳远任务。基于生物力学知识确定了一组特征,然后套索回归允许识别立定跳远长度预测因子的一个子集,该子集被用作不同优化机器学习架构的输入。使用所提出配置获得的结果表明,在测试阶段,使用高斯过程回归模型估计立定跳远长度时,均方根误差(RMSE)为0.122米,肯德尔等级相关系数(Kendall's τ)< 0.1。所提出的模型给出了同方差结果,这意味着模型的误差不依赖于估计量。本研究证明了在生态环境中使用低成本智能手机传感器自动、客观地估计立定跳远表现的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ce/10215263/4c0ce99f1d67/bioengineering-10-00546-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验