Suppr超能文献

神经疾病中基于传感器的康复:研究趋势的文献计量分析

Sensor-Based Rehabilitation in Neurological Diseases: A Bibliometric Analysis of Research Trends.

作者信息

Facciorusso Salvatore, Spina Stefania, Reebye Rajiv, Turolla Andrea, Calabrò Rocco Salvatore, Fiore Pietro, Santamato Andrea

机构信息

Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.

Spasticity and Movement Disorders "ReSTaRt", Unit Physical Medicine and Rehabilitation Section, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.

出版信息

Brain Sci. 2023 Apr 26;13(5):724. doi: 10.3390/brainsci13050724.

Abstract

BACKGROUND

As the field of sensor-based rehabilitation continues to expand, it is important to gain a comprehensive understanding of its current research landscape. This study aimed to conduct a bibliometric analysis to identify the most influential authors, institutions, journals, and research areas in this field.

METHODS

A search of the Web of Science Core Collection was performed using keywords related to sensor-based rehabilitation in neurological diseases. The search results were analyzed with CiteSpace software using bibliometric techniques, including co-authorship analysis, citation analysis, and keyword co-occurrence analysis.

RESULTS

Between 2002 and 2022, 1103 papers were published on the topic, with slow growth from 2002 to 2017, followed by a rapid increase from 2018 to 2022. The United States was the most active country, while the Swiss Federal Institute of Technology had the highest number of publications among institutions. published the most papers. The top keywords included rehabilitation, stroke, and recovery. The clusters of keywords comprised machine learning, specific neurological conditions, and sensor-based rehabilitation technologies.

CONCLUSIONS

This study provides a comprehensive overview of the current state of sensor-based rehabilitation research in neurological diseases, highlighting the most influential authors, journals, and research themes. The findings can help researchers and practitioners to identify emerging trends and opportunities for collaboration and can inform the development of future research directions in this field.

摘要

背景

随着基于传感器的康复领域不断扩展,全面了解其当前的研究状况非常重要。本研究旨在进行文献计量分析,以确定该领域最具影响力的作者、机构、期刊和研究领域。

方法

使用与神经疾病中基于传感器的康复相关的关键词,在科学网核心合集中进行检索。利用文献计量技术,包括合著分析、引文分析和关键词共现分析,使用CiteSpace软件对检索结果进行分析。

结果

在2002年至2022年期间,共发表了1103篇关于该主题的论文,2002年至2017年增长缓慢,随后在2018年至2022年迅速增加。美国是最活跃的国家,而瑞士联邦理工学院在各机构中发表的论文数量最多。发表的论文最多。顶级关键词包括康复、中风和恢复。关键词聚类包括机器学习、特定神经疾病和基于传感器的康复技术。

结论

本研究全面概述了神经疾病中基于传感器的康复研究的现状,突出了最具影响力的作者、期刊和研究主题。这些发现可以帮助研究人员和从业者识别新兴趋势和合作机会,并为该领域未来研究方向的发展提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e760/10216556/0f1df3955283/brainsci-13-00724-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验