Suppr超能文献

通过功能磁共振成像功能连接的判别式嵌入聚类进行海马体分割

Hippocampus Parcellation via Discriminative Embedded Clustering of fMRI Functional Connectivity.

作者信息

Peng Limin, Hou Chenping, Su Jianpo, Shen Hui, Wang Lubin, Hu Dewen, Zeng Ling-Li

机构信息

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.

College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China.

出版信息

Brain Sci. 2023 May 3;13(5):757. doi: 10.3390/brainsci13050757.

Abstract

Dividing a pre-defined brain region into several heterogenous subregions is crucial for understanding its functional segregation and integration. Due to the high dimensionality of brain functional features, clustering is often postponed until dimensionality reduction in traditional parcellation frameworks occurs. However, under such stepwise parcellation, it is very easy to fall into the dilemma of local optimum since dimensionality reduction could not take into account the requirement of clustering. In this study, we developed a new parcellation framework based on the discriminative embedded clustering (DEC), combining subspace learning and clustering in a common procedure with alternative minimization adopted to approach global optimum. We tested the proposed framework in functional connectivity-based parcellation of the hippocampus. The hippocampus was parcellated into three spatial coherent subregions along the anteroventral-posterodorsal axis; the three subregions exhibited distinct functional connectivity changes in taxi drivers relative to non-driver controls. Moreover, compared with traditional stepwise methods, the proposed DEC-based framework demonstrated higher parcellation consistency across different scans within individuals. The study proposed a new brain parcellation framework with joint dimensionality reduction and clustering; the findings might shed new light on the functional plasticity of hippocampal subregions related to long-term navigation experience.

摘要

将预定义的脑区划分为几个异质子区域对于理解其功能分离和整合至关重要。由于脑功能特征的高维度性,在传统的脑图谱框架中,聚类通常会推迟到降维之后进行。然而,在这种逐步脑图谱绘制过程中,很容易陷入局部最优的困境,因为降维无法考虑聚类的要求。在本研究中,我们基于判别式嵌入聚类(DEC)开发了一种新的脑图谱框架,在一个共同的过程中结合子空间学习和聚类,并采用交替最小化来逼近全局最优。我们在基于功能连接的海马体脑图谱绘制中测试了所提出的框架。海马体沿着前腹 - 后背部轴线被划分为三个空间连贯的子区域;与非驾驶员对照组相比,这三个子区域在出租车司机中表现出明显不同的功能连接变化。此外,与传统的逐步方法相比,所提出的基于DEC的框架在个体内不同扫描之间表现出更高的脑图谱一致性。该研究提出了一种新的联合降维和聚类的脑图谱框架;这些发现可能为与长期导航经验相关的海马体子区域的功能可塑性提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验