Suppr超能文献

基于群组引导的个体海马功能区划分及其在正常老化中的应用。

Group-guided individual functional parcellation of the hippocampus and application to normal aging.

机构信息

College of Electrical Engineering, Sichuan University, Chengdu, China.

National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.

出版信息

Hum Brain Mapp. 2021 Dec 15;42(18):5973-5984. doi: 10.1002/hbm.25662. Epub 2021 Sep 16.

Abstract

Aging is closely associated with cognitive decline affecting attention, memory and executive functions. The hippocampus is the core brain area for human memory, learning, and cognition processing. To delineate the individual functional patterns of hippocampus is pivotal to reveal the neural basis of aging. In this study, we developed a group-guided individual parcellation approach based on semisupervised affinity propagation clustering using the resting-state functional magnetic resonance imaging to identify individual functional subregions of hippocampus and to identify the functional patterns of each subregion during aging. A three-way group parcellation was yielded and was taken as prior information to guide individual parcellation of hippocampus into head, body, and tail in each subject. The superiority of individual parcellation of hippocampus is validated by higher intraregional functional similarities by compared to group-level parcellation results. The individual variations of hippocampus were associated with coactivation patterns of three typical functions of hippocampus. Moreover, the individual functional connectivities of hippocampus subregions with predefined target regions could better predict age than group-level functional connectivities. Our study provides a novel framework for individual brain functional parcellations, which may facilitate the future individual researches for brain cognitions and brain disorders and directing accurate neuromodulation.

摘要

衰老是认知能力下降的主要原因,认知能力下降会影响注意力、记忆力和执行功能。海马体是大脑中与人类记忆、学习和认知处理相关的核心区域。描绘海马体的个体功能模式对于揭示衰老的神经基础至关重要。在这项研究中,我们使用静息态功能磁共振成像,开发了一种基于半监督相似性传播聚类的群组引导个体分割方法,以识别海马体的个体功能亚区,并确定每个亚区在衰老过程中的功能模式。生成了一个三向的组分割,并将其作为先验信息,以引导每个个体将海马体分割为头、体和尾。与基于群组的分割结果相比,海马体的个体分割具有更高的区域内功能相似性,验证了其优越性。海马体的个体变化与海马体三个典型功能的共激活模式有关。此外,与预设目标区域的海马体亚区的个体功能连接性比基于群组的功能连接性更能预测年龄。我们的研究为个体脑功能分割提供了一个新的框架,这可能有助于未来针对大脑认知和大脑障碍的个体研究,并指导精确的神经调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ba0/8596973/14b41e487ef7/HBM-42-5973-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验