Lungu Magdalena Valentina
Metallic, Composite and Polymeric Materials Department, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania.
Materials (Basel). 2023 May 14;16(10):3725. doi: 10.3390/ma16103725.
This article reviews the progress in developing ZnO-VO-based metal oxide varistors (MOVs) using powder metallurgy (PM) techniques. The aim is to create new, advanced ceramic materials for MOVs with comparable or superior functional properties to ZnO-BiO varistors using fewer dopants. The survey emphasizes the importance of a homogeneous microstructure and desirable varistor properties, such as high nonlinearity (α), low leakage current density (J), high energy absorption capability, reduced power loss, and stability for reliable MOVs. This study investigates the effect of VO and MO additives on the microstructure, electrical and dielectric properties, and aging behavior of ZnO-based varistors. The findings show that MOVs with 0.25-2 mol.% VO and MO additives sintered in air over 800 °C contain a primary phase of ZnO with a hexagonal wurtzite structure and several secondary phases that impact the MOV performance. The MO additives, such as BiO, InO, SbO, transition element oxides, and rare earth oxides, act as ZnO grain growth inhibitors and enhance the density, microstructure homogeneity, and nonlinearity. Refinement of the microstructure of MOVs and consolidation under appropriate PM conditions improve their electrical properties (J ≤ 0.2 mA/cm, α of 22-153) and stability. The review recommends further developing and investigating large-sized MOVs from the ZnO-VO systems using these techniques.
本文综述了采用粉末冶金(PM)技术开发基于ZnO-VO的金属氧化物压敏电阻(MOV)的进展。目的是使用更少的掺杂剂来制造具有与ZnO-BiO压敏电阻相当或更优异功能特性的新型先进陶瓷材料用于MOV。该综述强调了均匀微观结构和理想压敏电阻特性的重要性,如高非线性(α)、低漏电流密度(J)、高能量吸收能力、降低的功率损耗以及可靠MOV所需的稳定性。本研究调查了VO和MO添加剂对ZnO基压敏电阻的微观结构、电学和介电性能以及老化行为的影响。研究结果表明,在800°C以上空气中烧结的含有0.25-2 mol.% VO和MO添加剂的MOV含有具有六方纤锌矿结构的ZnO主相以及几个影响MOV性能的第二相。MO添加剂,如BiO、InO、SbO、过渡元素氧化物和稀土氧化物,充当ZnO晶粒生长抑制剂并提高密度、微观结构均匀性和非线性。在适当的PM条件下细化MOV的微观结构并进行固结可改善其电学性能(J≤0.2 mA/cm,α为22-153)和稳定性。该综述建议使用这些技术进一步开发和研究来自ZnO-VO系统的大型MOV。