Suppr超能文献

烷氧基-和咪唑取代呫吨酮的合成及分子对接研究作为α-淀粉酶和α-葡萄糖苷酶抑制剂。

Synthesis and Molecular Docking Studies of Alkoxy- and Imidazole-Substituted Xanthones as α-Amylase and α-Glucosidase Inhibitors.

机构信息

Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomax-Tepetitla, Km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico.

Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico.

出版信息

Molecules. 2023 May 18;28(10):4180. doi: 10.3390/molecules28104180.

Abstract

Current antidiabetic drugs have severe side effects, which may be minimized by new selective molecules that strongly inhibit α-glucosidase and weakly inhibit α-amylase. We have synthesized novel alkoxy-substituted xanthones and imidazole-substituted xanthones and have evaluated them for their in silico and in vitro α-glucosidase and α-amylase inhibition activity. Compounds , and promoted higher α-glucosidase inhibition (IC = 16.0, 12.8, and 4.0 µM, respectively) and lower α-amylase inhibition (IC = 76.7, 68.1, and >200 µM, respectively) compared to acarbose (IC = 306.7 µM for α-glucosidase and 20.0 µM for α-amylase). Contrarily, derivatives and showed higher α-amylase inhibition (IC = 5.4 and 8.7 µM, respectively) and lower α-glucosidase inhibition (IC = 232.7 and 145.2 µM, respectively). According to the structure-activity relationship, attaching 4-bromobutoxy or 4'-chlorophenylacetophenone moieties to the 2-hydroxy group of xanthone provides higher α-glucosidase inhibition and lower α-amylase inhibition. In silico studies suggest that these scaffolds are key in the activity and interaction of xanthone derivatives. Enzymatic kinetics studies showed that , , and are mainly mixed inhibitors on α-glucosidase and α-amylase. In addition, drug prediction and ADMET studies support that compounds , , and are candidates with antidiabetic potential.

摘要

目前的抗糖尿病药物有严重的副作用,新的选择性分子可以最大限度地减少这些副作用,这些分子强烈抑制α-葡萄糖苷酶,弱抑制α-淀粉酶。我们已经合成了新型烷氧基取代的黄酮和咪唑取代的黄酮,并评估了它们在体外和体外α-葡萄糖苷酶和α-淀粉酶抑制活性。与阿卡波糖(α-葡萄糖苷酶的 IC = 306.7 μM,α-淀粉酶的 IC = 20.0 μM)相比,化合物 、 和 促进了更高的α-葡萄糖苷酶抑制作用(IC = 16.0、12.8 和 4.0 μM,分别)和更低的α-淀粉酶抑制作用(IC = 76.7、68.1 和 >200 μM,分别)。相反,衍生物 和 显示出更高的α-淀粉酶抑制作用(IC = 5.4 和 8.7 μM,分别)和更低的α-葡萄糖苷酶抑制作用(IC = 232.7 和 145.2 μM,分别)。根据构效关系,将 4-溴丁氧基或 4'-氯苯乙酮部分连接到黄酮的 2-羟基上,可以提供更高的α-葡萄糖苷酶抑制作用和更低的α-淀粉酶抑制作用。计算机模拟研究表明,这些支架是黄酮衍生物活性和相互作用的关键。酶动力学研究表明, 、 和 主要是α-葡萄糖苷酶和α-淀粉酶的混合抑制剂。此外,药物预测和 ADMET 研究支持化合物 、 、 是具有抗糖尿病潜力的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2440/10222686/23eed8f09073/molecules-28-04180-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验