Suppr超能文献

用于具有应变硅沟道系统的3纳米技术节点的三鳍三栅Q鳍式场效应晶体管的开发与分析

Development and Analysis of a Three-Fin Trigate Q-FinFET for a 3 nm Technology Node with a Strained-Silicon Channel System.

作者信息

Nanda Swagat, Dhar Rudra Sankar, Awwad Falah, Hussein Mousa I

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology Mizoram, Chaltlang, Aizawl 796012, Mizoram, India.

Department of Electrical Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.

出版信息

Nanomaterials (Basel). 2023 May 18;13(10):1662. doi: 10.3390/nano13101662.

Abstract

Multi-gate field effect transistors (FETs) such as FinFETs are severely affected by short-channel effects (SCEs) below 14 nm technology nodes, with even taller fins incurring fringing capacitances. This leads to performance degradation of the devices, which inhibits further scaling of nanoFETs, deterring the progress of semiconductor industries. Therefore, research has not kept pace with the technological requirements of the International Roadmap for Devices and Systems (IRDS). Thus, the development of newer devices with superior performances in terms of higher ON currents, acceptable leakage currents and improved SCEs is needed to enable the continuance of integrated circuit (IC) technologies. The literature has advocated integration of strained-silicon technology in existing FinFETs, which is highly effective in enhancing ON currents through the strain effect. However, the ON currents can also be amplified by intensifying the number of fins in trigate (TG) FinFETs. Thus, three-fin TG quantum (Q)-FinFETs, using a novel tri-layered strained-silicon channel, are deployed here at 10 nm and 8 nm channel lengths. Threshold voltage is calculated analytically to validate the designs. The electrical parameters and quantum effects of both devices are explored, analysed and compared with respect to existing heterostructure-on-insulator (HOI) FinFETs and the proposed existing standard requirement of IRDS 2022 for a 3 nm technology node. The comparisons demonstrated a significant increase in the drive currents upon employing three fins of the same dimensions (8 nm gate length) and specifications in a device-based system. The performance is augmented in contrast to the 3 nm technology node device of IRDS 2022, with SCEs within the limits. Thus, employing a tri-layered strained-silicon channel system in each fin allowed for forming a three-fin Q-FinFET that, in our opinion, is the technique for consolidating the performance of the devices and enabling future generation device for faster switching operation in a sub-nano regime.

摘要

多栅极场效应晶体管(FET),如鳍式场效应晶体管(FinFET),在低于14纳米技术节点时会受到短沟道效应(SCE)的严重影响,鳍片越高,边缘电容越大。这会导致器件性能下降,从而阻碍纳米场效应晶体管的进一步缩小,阻碍半导体行业的发展。因此,相关研究未能跟上《国际设备与系统路线图》(IRDS)的技术要求。所以,需要开发在更高导通电流、可接受的漏电流和改善的短沟道效应方面具有卓越性能的新型器件,以实现集成电路(IC)技术的持续发展。文献主张在现有FinFET中集成应变硅技术,该技术通过应变效应在增强导通电流方面非常有效。然而,导通电流也可以通过增加三栅极(TG)FinFET中的鳍片数量来放大。因此,本文采用新颖的三层应变硅沟道,在沟道长度为10纳米和8纳米时部署了三鳍TG量子(Q)-FinFET。通过解析计算阈值电压来验证设计。研究、分析了这两种器件的电学参数和量子效应,并与现有的绝缘体上异质结构(HOI)FinFET以及IRDS 2022针对3纳米技术节点提出的现有标准要求进行了比较。比较结果表明,在基于器件的系统中使用相同尺寸(栅极长度为8纳米)和规格的三个鳍片时,驱动电流显著增加。与IRDS 2022的3纳米技术节点器件相比,性能得到了提升,短沟道效应在限制范围内。因此,在每个鳍片中采用三层应变硅沟道系统可以形成三鳍Q-FinFET,我们认为这是一种巩固器件性能并实现下一代器件在亚纳米区域更快开关操作的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e9/10221103/91205e7b29f4/nanomaterials-13-01662-g001.jpg

相似文献

3
Asymmetric Drain Extension Dual-kk Trigate Underlap FinFET Based on RF/Analog Circuit.
Micromachines (Basel). 2017 Nov 9;8(11):330. doi: 10.3390/mi8110330.
5
Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate.
Nanoscale Res Lett. 2015 Dec;10(1):958. doi: 10.1186/s11671-015-0958-4. Epub 2015 Jun 2.
6
Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.
ACS Nano. 2015 May 26;9(5):4872-81. doi: 10.1021/nn5064216. Epub 2015 Apr 24.
7
Can ultra-thin Si FinFETs work well in the sub-10 nm gate-length region?
Nanoscale. 2021 Mar 18;13(10):5536-5544. doi: 10.1039/d0nr09094h.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验