Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
Plant J. 2023 Sep;115(5):1331-1344. doi: 10.1111/tpj.16322. Epub 2023 Jun 8.
The plant-specific TOPLESS (TPL) family of transcriptional corepressors is integral to multiple angiosperm developmental processes. Despite this, we know little about TPL function in other plants. To address this gap, we investigated the roles TPL plays in the bryophyte Physcomitrium patens, which diverged from angiosperms approximately 0.5 billion years ago. Although complete loss of PpTPL function is lethal, transgenic lines with reduced PpTPL activity revealed that PpTPLs are essential for two fundamental developmental switches in this plant: the transitions from basal photosynthetic filaments (chloronemata) to specialised foraging filaments (caulonemata) and from two-dimensional (2D) to three-dimensional (3D) growth. Using a transcriptomics approach, we integrated PpTPL into the regulatory network governing 3D growth and we propose that PpTPLs represent another important class of regulators that are essential for the 2D-to-3D developmental switch. Transcriptomics also revealed a previously unknown role for PpTPL in the regulation of flavonoids. Intriguingly, 3D growth and the formation of caulonemata were crucial innovations that facilitated the colonisation of land by plants, a major transformative event in the history of life on Earth. We conclude that TPL, which existed before the land plants, was co-opted into new developmental pathways, enabling phytoterrestrialisation and the evolution of land plants.
植物特有的 TOPLESS(TPL)家族转录共抑制因子对于多种被子植物的发育过程至关重要。尽管如此,我们对 TPL 在其他植物中的功能知之甚少。为了弥补这一空白,我们研究了 TPL 在苔藓植物Physcomitrium patens 中的作用,该植物与被子植物分化的时间约为 5 亿年前。尽管完全丧失 PpTPL 功能是致命的,但 PpTPL 活性降低的转基因系表明,PpTPL 在这种植物的两个基本发育开关中是必不可少的:从基础光合作用丝(chloronemata)到专门觅食丝(caulonemata)的转变,以及从二维(2D)到三维(3D)生长的转变。我们通过转录组学方法将 PpTPL 整合到调控 3D 生长的调控网络中,并提出 PpTPL 代表了另一类对于 2D 到 3D 发育转换至关重要的调控因子。转录组学还揭示了 PpTPL 在类黄酮调控中的一个先前未知的作用。有趣的是,3D 生长和 caulonemata 的形成是植物在陆地上殖民的关键创新,这是地球上生命历史上的一个重大变革事件。我们得出的结论是,TPL 存在于陆地植物之前,被重新用于新的发育途径,从而使植物能够在陆地定居,并促进陆地植物的进化。