Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA.
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2023 May 12;130(19):193402. doi: 10.1103/PhysRevLett.130.193402.
Neutral atoms and molecules trapped in optical tweezers have become a prevalent resource for quantum simulation, computation, and metrology. However, the maximum achievable system sizes of such arrays are often limited by the stochastic nature of loading into optical tweezers, with a typical loading probability of only 50%. Here we present a species-agnostic method for dark-state enhanced loading (DSEL) based on real-time feedback, long-lived shelving states, and iterated array reloading. We demonstrate this technique with a 95-tweezer array of ^{88}Sr atoms, achieving a maximum loading probability of 84.02(4)% and a maximum array size of 91 atoms in one dimension. Our protocol is complementary to, and compatible with, existing schemes for enhanced loading based on direct control over light-assisted collisions, and we predict it can enable close-to-unity filling for arrays of atoms or molecules.
被光学镊子困住的中性原子和分子已成为量子模拟、计算和计量学的常用资源。然而,这种阵列所能达到的最大系统尺寸通常受到将原子或分子加载到光学镊子中的随机性的限制,其典型加载概率只有 50%。在这里,我们提出了一种基于实时反馈、长寿命搁置态和迭代式阵列重新加载的通用暗态增强加载(DSEL)方法。我们使用一个由 95 个光学镊子组成的^{88}Sr 原子阵列展示了这种技术,实现了 84.02(4)%的最大加载概率和一维 91 个原子的最大阵列尺寸。我们的方案与基于光辅助碰撞的直接控制的增强加载的现有方案相辅相成,我们预测它可以实现原子或分子阵列的近乎全填充。