文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于咖啡叶提取物的 5-咖啡酰奎宁酸修饰银纳米粒子用于高灵敏半胱氨酸检测

Bioinspired 5-caffeoylquinic acid capped silver nanoparticles using Coffee arabica leaf extract for high-sensitive cysteine detection.

机构信息

Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India.

Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA.

出版信息

Sci Rep. 2023 May 27;13(1):8651. doi: 10.1038/s41598-023-34944-9.


DOI:10.1038/s41598-023-34944-9
PMID:37244906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10224661/
Abstract

Selection of plant extracts as bioactive phytochemical source to synthesize nanoparticles is highly demanding due to the biocompatibility, nontoxicity, and cost-effectiveness over other available physical and chemical methods. Here, for the first time, Coffee arabica leaf extracts (CAE) were used to produce highly stable silver nanoparticles (AgNPs) and the corresponding bio reduction, capping and stabilization mechanism mediated by dominant isomer 5-caffeoylquinic acid (5-CQA) is discussed. UV-Vis, FTIR, μRaman spectroscopy, TEM, DLS and Zeta potential analyzer measurements were employed to characterize these green synthesized NPs. The affinity of 5-CQA capped CAE-AgNPs to thiol moiety of amino acid is utilized for the selective as well as sensitive detection of L-cysteine (L-Cys) to a low detection limit of 0.1 nM, as obtained from its μRaman spectra. Hence, the proposed novel, simple, eco-friendly, and economically sustainable method can provide a promising nanoplatform in the field of biosensors compliant with large-scale industrial production of AgNPs without aid of further instrumentation.

摘要

由于生物相容性、无毒和成本效益优于其他可用的物理和化学方法,因此,选择植物提取物作为生物活性植物化学物质来源来合成纳米颗粒的需求非常高。在这里,首次使用阿拉比卡咖啡叶提取物 (CAE) 来生产高度稳定的银纳米颗粒 (AgNPs),并讨论了由主要异构体 5-咖啡酰奎宁酸 (5-CQA) 介导的相应生物还原、封端和稳定机制。采用紫外-可见分光光度法、傅里叶变换红外光谱法、μ拉曼光谱法、TEM、DLS 和 Zeta 电位分析仪对这些绿色合成的 NPs 进行了表征。利用 5-CQA 封端 CAE-AgNPs 与氨基酸的巯基部分的亲和力,对 L-半胱氨酸 (L-Cys) 进行了选择性和灵敏检测,其检测限低至 0.1 nM,这是从其 μ拉曼光谱中获得的。因此,所提出的新颖、简单、环保且经济可持续的方法可以为生物传感器领域提供一个有前途的纳米平台,符合大规模工业生产 AgNPs 的要求,而无需进一步的仪器设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/31c093859d08/41598_2023_34944_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/58313ca845a8/41598_2023_34944_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/f2673c647302/41598_2023_34944_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/bc370ab9aba9/41598_2023_34944_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/5acf33fd14ee/41598_2023_34944_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/d28932a6cfb5/41598_2023_34944_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/f44c35215019/41598_2023_34944_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/402485f1f515/41598_2023_34944_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/31c093859d08/41598_2023_34944_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/58313ca845a8/41598_2023_34944_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/f2673c647302/41598_2023_34944_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/bc370ab9aba9/41598_2023_34944_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/5acf33fd14ee/41598_2023_34944_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/d28932a6cfb5/41598_2023_34944_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/f44c35215019/41598_2023_34944_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/402485f1f515/41598_2023_34944_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/10224973/31c093859d08/41598_2023_34944_Fig8_HTML.jpg

相似文献

[1]
Bioinspired 5-caffeoylquinic acid capped silver nanoparticles using Coffee arabica leaf extract for high-sensitive cysteine detection.

Sci Rep. 2023-5-27

[2]
Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti.

J Photochem Photobiol B. 2017-4-25

[3]
"Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract".

Mater Sci Eng C Mater Biol Appl. 2016-5

[4]
Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs - A comparative study.

Ecotoxicol Environ Saf. 2015-8-12

[5]
Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.

Mater Sci Eng C Mater Biol Appl. 2018-2-16

[6]
Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-2-5

[7]
Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Leaf and Root Extracts.

Biomolecules. 2021-2-2

[8]
Bio-functionalized silver nanoparticles: a novel colorimetric probe for cysteine detection.

Appl Biochem Biotechnol. 2015-4

[9]
Eco-friendly Green Synthesis of Silver Nanoparticles from Leaf Extract of Solanum khasianum: Optical Properties and Biological Applications.

Appl Biochem Biotechnol. 2023-1

[10]
Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract.

Mater Sci Eng C Mater Biol Appl. 2015-1-9

引用本文的文献

[1]
Effect of Biogenic Gold Nanoparticles on Gut Microbiota Composition during Larval-to-Pupal Transition in L.

ACS Omega. 2025-6-30

[2]
Anti-amyloidogenic properties of 5‑caffeoylquinic acid-capped selenium nanoparticles.

Sci Rep. 2025-6-3

[3]
Bioactive silver nanoparticles derived from Carica papaya floral extract and its dual-functioning biomedical application.

Sci Rep. 2025-3-15

本文引用的文献

[1]
Effect of the physicochemical changes in the antimicrobial durability of green synthesized silver nanoparticles during their long-term storage.

RSC Adv. 2022-10-25

[2]
CRISPR-based oligo recombineering prioritizes apicomplexan cysteines for drug discovery.

Nat Microbiol. 2022-11

[3]
Traceless cysteine-linchpin enables precision engineering of lysine in native proteins.

Nat Commun. 2022-10-13

[4]
Reaction-based fluorogenic probes for detecting protein cysteine oxidation in living cells.

Nat Commun. 2022-9-21

[5]
Characterization of Extracts of Coffee Leaves ( L.) by Spectroscopic and Chromatographic/Spectrometric Techniques.

Foods. 2022-8-18

[6]
Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue.

Sci Rep. 2022-7-21

[7]
Interaction Mechanisms and Interface Configuration of Cysteine Adsorbed on Gold, Silver, and Copper Nanoparticles.

Langmuir. 2022-5-10

[8]
A novel raiometric fluorescence probe based on silicon quantum dots and copper nanoclusters for visual assay of l-cysteine in milks.

Food Chem. 2022-6-15

[9]
A Review on Electrochemical Sensors and Biosensors Used in Chlorogenic Acid Electroanalysis.

Int J Mol Sci. 2021-12-5

[10]
Molecular Mechanisms of Possible Action of Phenolic Compounds in COVID-19 Protection and Prevention.

Int J Mol Sci. 2021-11-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索