Suppr超能文献

基于光电容积脉搏波的 PPG2BP-net 的连续无袖带血压监测用于高个体内血压变化。

Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations.

机构信息

Department of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea.

Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, 03080, South Korea.

出版信息

Sci Rep. 2023 May 27;13(1):8605. doi: 10.1038/s41598-023-35492-y.

Abstract

Continuous, comfortable, convenient (C3), and accurate blood pressure (BP) measurement and monitoring are needed for early diagnosis of various cardiovascular diseases. To supplement the limited C3 BP measurement of existing cuff-based BP technologies, though they may achieve reliable accuracy, cuffless BP measurement technologies, such as pulse transit/arrival time, pulse wave analysis, and image processing, have been studied to obtain C3 BP measurement. One of the recent cuffless BP measurement technologies, innovative machine-learning and artificial intelligence-based technologies that can estimate BP by extracting BP-related features from photoplethysmography (PPG)-based waveforms have attracted interdisciplinary attention of the medical and computer scientists owing to their handiness and effectiveness for both C3 and accurate, i.e., C3A, BP measurement. However, C3A BP measurement remains still unattainable because the accuracy of the existing PPG-based BP methods was not sufficiently justified for subject-independent and highly varying BP, which is a typical case in practice. To circumvent this issue, a novel convolutional neural network(CNN)- and calibration-based model (PPG2BP-Net) was designed by using a comparative paired one-dimensional CNN structure to estimate highly varying intrasubject BP. To this end, approximately [Formula: see text], [Formula: see text], and [Formula: see text] of 4185 cleaned, independent subjects from 25,779 surgical cases were used for training, validating, and testing the proposed PPG2BP-Net, respectively and exclusively (i.e., subject-independent modelling). For quantifying the intrasubject BP variation from an initial calibration BP, a novel 'standard deviation of subject-calibration centring (SDS)' metric is proposed wherein high SDS represents high intrasubject BP variation from the calibration BP and vice versa. PPG2BP-Net achieved accurately estimated systolic and diastolic BP values despite high intrasubject variability. In 629-subject data acquired after 20 minutes following the A-line (arterial line) insertion, low error mean and standard deviation of [Formula: see text] and [Formula: see text] for highly varying A-line systolic and diastolic BP values, respectively, where their SDSs are 15.375 and 8.745. This study moves one step forward in developing the C3A cuffless BP estimation devices that enable the push and agile pull services.

摘要

连续、舒适、便捷(C3)和准确的血压(BP)测量和监测对于早期诊断各种心血管疾病至关重要。虽然现有的基于袖带的 BP 技术可以实现可靠的准确性,但为了补充有限的 C3 BP 测量,已经研究了无袖带 BP 测量技术,例如脉搏传输/到达时间、脉搏波分析和图像处理,以获得 C3 BP 测量。最近的无袖带 BP 测量技术之一是基于创新的机器学习和人工智能技术,这些技术可以通过从基于光电容积脉搏波(PPG)的波形中提取与 BP 相关的特征来估计 BP,由于其便携性和对 C3 和准确的有效性,即 C3A,BP 测量,引起了医学和计算机科学家的跨学科关注。然而,C3A BP 测量仍然难以实现,因为现有的基于 PPG 的 BP 方法的准确性还不足以证明其在非特定对象和高度变化的 BP 情况下的合理性,这在实践中是典型的情况。为了解决这个问题,设计了一种新的卷积神经网络(CNN)和基于校准的模型(PPG2BP-Net),该模型使用比较的一维 CNN 结构来估计高度变化的个体内 BP。为此,大约 4185 名从 25779 例手术病例中筛选出的独立个体的约 [Formula: see text]、[Formula: see text] 和 [Formula: see text] 分别用于训练、验证和测试所提出的 PPG2BP-Net,且完全独立(即,个体独立建模)。为了量化初始校准 BP 中的个体内 BP 变化,提出了一种新的“个体校准中心的标准差(SDS)”度量标准,其中高 SDS 表示校准 BP 中个体内 BP 的高变化,反之亦然。尽管个体内变异性很高,但 PPG2BP-Net 仍能准确估计收缩压和舒张压值。在 A 线(动脉线)插入后 20 分钟采集的 629 名个体数据中,A 线收缩压和舒张压值的低误差均值和标准差分别为 [Formula: see text] 和 [Formula: see text],其中 SDS 分别为 15.375 和 8.745。这项研究在开发 C3A 无袖带 BP 估计设备方面向前迈进了一步,这些设备能够实现推动和敏捷拉动服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d56/10224938/b935c35e23af/41598_2023_35492_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验