Suppr超能文献

用于高性能电化学锂离子存储的分层 3D 多孔氢化石墨炔。

Hierarchical 3D Porous Hydrogen-Substituted Graphdiyne for High-Performance Electrochemical Lithium-Ion Storage.

机构信息

National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.

Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 Jun 7;15(22):26910-26917. doi: 10.1021/acsami.3c05106. Epub 2023 May 28.

Abstract

Graphdiyne (GDY) has realized significant achievements in lithium-ion batteries (LIBs) because of its unique π-conjugated skeleton with sp- and sp-hybridized carbon atoms. Enriching the accessible surface areas and diffusion pathways of Li ions can realize more storage sites and rapid transport dynamics. Herein, three-dimensional porous hydrogen-substituted GDY (HsGDY) is developed for high-performance Li-ion storage. HsGDY, fabricated via a versatile interface-assisted synthesis strategy, exhibits a large specific surface area (667.9 m g), a hierarchical porous structure, and an expanded interlayer space, which accelerate Li-ion accessibility and lithiation/delithiation. Owing to this high π-conjugated, conductive, and porous framework, HsGDY exhibits a large reversible capacity (930 mA h g after 100 cycles at 1 A g), superior cycle (720 mA h g after 300 cycles at 1 A g), and rate (490 mA h g at 5 A g) performances. Density functional theory calculations of the low diffusion barrier in the lamination and vertical directions further reveal the fast Li-ion transport kinetics of HsGDY. Additionally, a LiCoO-HsGDY full cell is constructed, which exhibits a good practical charge/discharge capacity of 128 mA h g and stable cycling behavior. This study highlights the advanced design of next-generation LIBs to sustainably develop the new energy industry.

摘要

二维石墨炔(GDY)由于其独特的具有 sp 和 sp 杂化碳原子的π共轭骨架,在锂离子电池(LIBs)中取得了重大进展。丰富锂离子的可及表面积和扩散途径可以实现更多的存储位点和快速的传输动力学。本文开发了三维多孔氢化 GDY(HsGDY)用于高性能锂离子存储。HsGDY 通过多功能界面辅助合成策略制备,具有大的比表面积(667.9 m g)、分级多孔结构和扩展的层间空间,加速了锂离子的可及性和锂化/脱锂。由于这种高共轭、导电和多孔框架,HsGDY 表现出大的可逆容量(在 1 A g 下循环 100 次后为 930 mA h g)、优异的循环(在 1 A g 下循环 300 次后为 720 mA h g)和倍率(在 5 A g 下为 490 mA h g)性能。层状和垂直方向低扩散势垒的密度泛函理论计算进一步揭示了 HsGDY 快速的锂离子输运动力学。此外,构建了 LiCoO-HsGDY 全电池,其具有良好的实际充放电容量为 128 mA h g 和稳定的循环行为。本研究强调了下一代 LIBs 的先进设计,以可持续发展新能源产业。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验