He Jianjiang, Li Xiaodong, Yang Ze, Zhang Deyi, Lu Tiantian, Liu Wenjing, Liu Qin, Wang Kun, Huang Changshui
Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao 266042, P. R. China.
Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100049, P. R. China.
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):18008-18018. doi: 10.1021/acsami.3c16588. Epub 2024 Apr 1.
Nanostructured electrode materials become a vital component for future electrode materials because of their short electron and ion transport distances for fast charge and discharge processes and sufficient space between particles for volume expansion. So, achieving a smaller size of the nanomaterial with stable structure and high electrode performance is always the pursuit. Herein, the hybrid electrode material system hydrogen-substituted graphdiyne (HsGDY)/CuO-quantum dots (QDs) composed of an active carbon substrate and vibrant metal oxide QD load was established by HsGDY and cuprous oxide. The HsGDY frame with conjugated structure not only delivers impressive capacity by a self-exchange mechanism but also characterizes a matrix to forge strong connections with numerous active CuO-QDs for the prevention of aggregation, leading to a homogeneous storage and transport of charge in a bulk material of crisscross structural pores. QD-based electrode materials would exhibit desired capacities by their large surface area, abundant active surface atoms, and the short diffusion pathway. The hybrid system of HsGDY/CuO-QDs delivers an ultrahigh capacity of 1230 mA h g with loading density reaching up to 1 mg cm. In the meantime, the electrode exhibits a long cycle stability of over 8000 cycles. The synergistic effect endows the hybrid system electrode with an approximately theoretical energy density, suggesting the great potential of such carbon/QD hybrid material system applied for high-performance batteries.
纳米结构电极材料因其在快速充放电过程中电子和离子传输距离短以及颗粒间有足够空间用于体积膨胀,而成为未来电极材料的重要组成部分。因此,实现具有稳定结构和高电极性能的更小尺寸纳米材料一直是人们追求的目标。在此,通过氢取代石墨炔(HsGDY)和氧化亚铜建立了由活性炭基底和活泼金属氧化物量子点(QDs)负载组成的混合电极材料体系——氢取代石墨炔(HsGDY)/氧化铜量子点(QDs)。具有共轭结构的HsGDY框架不仅通过自交换机制提供可观的容量,还具有作为基质与众多活性CuO-QDs形成强连接以防止聚集的特性,从而在具有交叉结构孔隙的块状材料中实现电荷的均匀存储和传输。基于量子点的电极材料因其大表面积、丰富的活性表面原子和短扩散路径而表现出理想的容量。HsGDY/CuO-QDs混合体系提供了高达1230 mA h g的超高容量,负载密度达到1 mg cm。同时,该电极表现出超过8000次循环的长循环稳定性。这种协同效应赋予混合体系电极近似理论的能量密度,表明这种碳/量子点混合材料体系在高性能电池应用方面具有巨大潜力。