Kong Suzhen, Cai Dong, Li Guifa, Xu Xiangju, Zhou Suya, Ding Xinwei, Zhang Yongqin, Yang Shuo, Zhou Xuemei, Nie Huagui, Huang Shaoming, Peng Ping, Yang Zhi
Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
School of Material Science and Engineering, Nanchang Hangkong University, Jiangxi, 330063, China.
Nanoscale. 2021 Feb 18;13(6):3817-3826. doi: 10.1039/d0nr07878f.
To overcome the shuttle effect in lithium-sulfur (Li-S) batteries, an sp/sp2 hybridized all-carbon interlayer by coating graphene (Gra) and hydrogen-substituted graphdiyne (HsGDY) with a specific surface area as high as 2184 m2 g-1 on a cathode is designed and prepared. The two-dimensional network and rich pore structure of HsGDY can enable the fast physical adsorption of lithium polysulfides (LiPSs). In situ Raman spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS) combined with density functional theory (DFT) computations confirm that the acetylenic bonds in HsGDY can trap the Li+ of LiPSs owing to the strong adsorption of Li+ by acetylenic active sites. The strong physical adsorption and chemical anchoring of LiPSs by the HsGDY materials promote the conversion reaction of LiPSs to further mitigate the shuttling problem. As a result, Li-S batteries integrated with the all-carbon interlayers exhibit excellent cycling stability during long-term cycling with an attenuation rate of 0.089% per cycle at 1 C over 500 cycles.
为克服锂硫(Li-S)电池中的穿梭效应,设计并制备了一种通过在阴极上涂覆比表面积高达2184 m2 g-1的石墨烯(Gra)和氢取代石墨炔(HsGDY)形成的sp/sp2杂化全碳中间层。HsGDY的二维网络和丰富的孔结构能够实现多硫化锂(LiPSs)的快速物理吸附。原位拉曼光谱和非原位X射线光电子能谱(XPS)结合密度泛函理论(DFT)计算证实,由于炔基活性位点对Li+的强吸附,HsGDY中的炔键能够捕获LiPSs的Li+。HsGDY材料对LiPSs的强物理吸附和化学锚定促进了LiPSs的转化反应,进一步缓解了穿梭问题。结果,集成了全碳中间层的Li-S电池在长期循环过程中表现出优异的循环稳定性,在1 C下500次循环中每循环的衰减率为0.089%。