Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam.
Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
Environ Res. 2023 Aug 15;231(Pt 2):116262. doi: 10.1016/j.envres.2023.116262. Epub 2023 May 27.
MnO nanoparticles have played a vital role in biomedical, catalysis, electrochemical and energy storage fields, but requiring toxic chemicals in the fabrication intercepts their applications. There is an increasing demand for biosynthesis of MnO nanoparticles using green sources such as plant species in accordance with the purposes of environmental mitigation and production cost reduction. Here, we review recent advancements on the use of natural compounds such as polyphenols, reducing sugars, quercetins, etc. Extracted directly from low-cost and available plants for biogenic synthesis of MnO nanoparticles. Role of these phytochemicals and formation mechanism of bio-medicated MnO nanoparticles are shed light on. MnO nanoparticles own small particle size, high crystallinity, diverse morphology, high surface area and stability. Thanks to higher biocompatibility, bio-mediated synthesized MnO nanoparticles exhibited better antibacterial, antifungal, and anticancer activity than chemically synthesized ones. In terms of wastewater treatment and energy storage, they also served as efficient adsorbents and catalyst. Moreover, several aspects of limitation and future outlook of bio-mediated MnO nanoparticles in the fields are analyzed. It is expected that the present work not only expands systematic understandings of synthesis methods, properties and applications MnO nanoparticles but also pave the way for the nanotechnology revolution in combination with green chemistry and sustainable development.
MnO 纳米颗粒在生物医学、催化、电化学和储能领域发挥了重要作用,但在制造过程中需要使用有毒化学品,这限制了它们的应用。人们越来越希望使用绿色资源,如植物物种,来生物合成 MnO 纳米颗粒,以实现环境缓解和降低生产成本的目的。在这里,我们回顾了最近利用天然化合物(如多酚、还原糖、槲皮素等)直接从低成本和可用的植物中提取来生物合成 MnO 纳米颗粒的进展。本文介绍了这些植物化学物质的作用和生物医学 MnO 纳米颗粒的形成机制。MnO 纳米颗粒具有粒径小、结晶度高、形态多样、比表面积大和稳定性好等优点。由于具有更高的生物相容性,生物介导合成的 MnO 纳米颗粒在抗菌、抗真菌和抗癌活性方面优于化学合成的 MnO 纳米颗粒。在废水处理和储能方面,它们也可用作高效吸附剂和催化剂。此外,还分析了生物介导 MnO 纳米颗粒在这些领域的几个局限性和未来展望。预计本工作不仅可以扩展对 MnO 纳米颗粒的合成方法、性质和应用的系统认识,而且还可以为绿色化学和可持续发展相结合的纳米技术革命铺平道路。