Department of Physics, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.
Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
ACS Nano. 2023 Jun 13;17(11):10010-10018. doi: 10.1021/acsnano.2c12103. Epub 2023 May 30.
Growing continuous monolayer films of transition-metal dichalcogenides (TMDs) without the disruption of grain boundaries is essential to realize the full potential of these materials for future electronics and optoelectronics, but it remains a formidable challenge. It is generally believed that controlling the TMDs orientations on epitaxial substrates stems from matching the atomic registry, symmetry, and penetrable van der Waals forces. Interfacial reconstruction within the exceedingly narrow substrate-epilayer gap has been anticipated. However, its role in the growth mechanism has not been intensively investigated. Here, we report the experimental conformation of an interfacial reconstructed (IR) layer within the substrate-epilayer gap. Such an IR layer profoundly impacts the orientations of nucleating TMDs domains and, thus, affects the materials' properties. These findings provide deeper insights into the buried interface that could have profound implications for the development of TMD-based electronics and optoelectronics.
生长没有晶界中断的过渡金属二卤化物 (TMD) 的连续单层膜对于实现这些材料在未来电子学和光电学中的全部潜力至关重要,但这仍然是一个艰巨的挑战。人们普遍认为,控制外延衬底上 TMD 的取向源于匹配原子配位数、对称性和可穿透的范德华力。已经预期到在极其狭窄的衬底-外延层间隙内的界面重构。然而,其在生长机制中的作用尚未得到深入研究。在这里,我们报告了在衬底-外延层间隙内界面重构 (IR) 层的实验确认。这样的 IR 层深刻地影响了成核 TMD 畴的取向,从而影响了材料的性能。这些发现为埋藏界面提供了更深入的了解,这可能对基于 TMD 的电子学和光电学的发展产生深远的影响。