He Xing, Tareq Abu Montakim, Qi Kai, Conti Ylli, Tung Vincent, Chiang Naihao
Department of Chemistry, University of Houston, Houston, Texas 77204, United States.
Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
Nano Lett. 2024 Oct 30;24(43):13805-13810. doi: 10.1021/acs.nanolett.4c04200. Epub 2024 Oct 21.
Scanning ion conductance microscopy (SICM) is a powerful surface imaging tool used in the electrolytic environment. Tip-enhanced Raman spectroscopy (TERS) can give more information in addition to the morphology provided by the SICM by utilizing label-free Raman spectroscopy aided by the localized plasmonic enhancement from the metal-coated probes. In this study, the integration of SICM with TERS is demonstrated through employing a silver-coated plasmonic nanopipette. Leveraging a two-dimensional (2D) molybdenum disulfide (MoS) as a model system, the SICM-TERS enhancement factor was estimated to be ∼10, supported by finite-difference time-domain (FDTD) simulation. Moreover, the subnanometer distance dependence SICM-TERS study reveals the tensile stress and structural changes caused by the nanopipette. These findings illustrate the potential of SICM-TERS for providing comprehensive morphological and chemical insights into electrolytic environments, paving the way for future investigations of electrocatalytic and biological systems.
扫描离子电导显微镜(SICM)是一种用于电解环境的强大表面成像工具。尖端增强拉曼光谱(TERS)通过利用金属涂层探针的局域等离子体增强辅助的无标记拉曼光谱,除了能提供SICM所呈现的形态信息外,还能给出更多信息。在本研究中,通过使用镀银的等离子体纳米移液器展示了SICM与TERS的集成。以二维(2D)二硫化钼(MoS)作为模型系统,在时域有限差分(FDTD)模拟的支持下,SICM-TERS增强因子估计约为10。此外,亚纳米距离依赖性SICM-TERS研究揭示了纳米移液器引起的拉伸应力和结构变化。这些发现说明了SICM-TERS在提供电解环境的全面形态和化学见解方面的潜力,为未来电催化和生物系统的研究铺平了道路。