Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
J Chem Phys. 2020 Sep 28;153(12):125102. doi: 10.1063/5.0019088.
The dissociation of ligands from proteins and other biomacromolecules occurs over a wide range of timescales. For most pharmaceutically relevant inhibitors, these timescales are far beyond those that are accessible by conventional molecular dynamics (MD) simulation. Consequently, to explore ligand egress mechanisms and compute dissociation rates, it is necessary to enhance the sampling of ligand unbinding. Random Acceleration MD (RAMD) is a simple method to enhance ligand egress from a macromolecular binding site, which enables the exploration of ligand egress routes without prior knowledge of the reaction coordinates. Furthermore, the τRAMD procedure can be used to compute the relative residence times of ligands. When combined with a machine-learning analysis of protein-ligand interaction fingerprints (IFPs), molecular features that affect ligand unbinding kinetics can be identified. Here, we describe the implementation of RAMD in GROMACS 2020, which provides significantly improved computational performance, with scaling to large molecular systems. For the automated analysis of RAMD results, we developed MD-IFP, a set of tools for the generation of IFPs along unbinding trajectories and for their use in the exploration of ligand dynamics. We demonstrate that the analysis of ligand dissociation trajectories by mapping them onto the IFP space enables the characterization of ligand dissociation routes and metastable states. The combined implementation of RAMD and MD-IFP provides a computationally efficient and freely available workflow that can be applied to hundreds of compounds in a reasonable computational time and will facilitate the use of τRAMD in drug design.
配体从蛋白质和其他生物大分子上的解离发生在广泛的时间尺度内。对于大多数与药物相关的抑制剂,这些时间尺度远远超出了传统分子动力学(MD)模拟的范围。因此,要探索配体释放机制并计算解离速率,有必要增强配体解吸的采样。随机加速 MD(RAMD)是一种增强配体从大分子结合位点中释放的简单方法,它可以在没有反应坐标先验知识的情况下探索配体释放途径。此外,τRAMD 过程可用于计算配体的相对停留时间。当与对蛋白质-配体相互作用指纹(IFP)的机器学习分析相结合时,可以识别影响配体解吸动力学的分子特征。在这里,我们描述了在 GROMACS 2020 中实现 RAMD 的方法,该方法提供了显著提高的计算性能,并可扩展到大型分子系统。为了对 RAMD 结果进行自动化分析,我们开发了 MD-IFP,这是一组用于在解吸轨迹上生成 IFP 并用于探索配体动力学的工具。我们证明,通过将配体解离轨迹映射到 IFP 空间上,可以对配体解离途径和亚稳态进行特征化。RAMD 和 MD-IFP 的联合实施提供了一种计算效率高且免费的工作流程,可在合理的计算时间内应用于数百种化合物,并将促进 τRAMD 在药物设计中的应用。