Thomas Young Centre and Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
Helmholtz-Zentrum Berlin für Materialien und Energie, Structure and Dynamics of Energy Materials, Hahn-Meitner Platz 1, 14109 Berlin, Germany.
J Am Chem Soc. 2023 Jun 14;145(23):12509-12517. doi: 10.1021/jacs.2c13336. Epub 2023 May 30.
Chalcohalide mixed-anion crystals have seen a rise in interest as "perovskite-inspired materials" with the goal of combining the ambient stability of metal chalcogenides with the exceptional optoelectronic performance of metal halides. SnSbSI is a promising candidate, having achieved a photovoltaic power conversion efficiency above 4%. However, there is uncertainty over the crystal structure and physical properties of this crystal family. Using a first-principles cluster expansion approach, we predict a disordered room-temperature structure, comprising both static and dynamic cation disorder on different crystallographic sites. These predictions are confirmed using single-crystal X-ray diffraction. Disorder leads to a lowering of the bandgap from 1.8 eV at low temperature to 1.5 eV at the experimental annealing temperature of 573 K. Cation disorder tailoring the bandgap allows for targeted application or for the use in a graded solar cell, which when combined with material properties associated with defect and disorder tolerance, encourages further investigation into the group IV/V chalcohalide family for optoelectronic applications.
卤化亚锡混合阴离子晶体作为“钙钛矿启发材料”引起了人们的兴趣,其目的是将金属硫属化物的环境稳定性与金属卤化物的卓越光电性能结合起来。SnSbSI 是一种很有前途的候选材料,其光电转换效率已超过 4%。然而,对于该晶体家族的晶体结构和物理性质还存在不确定性。我们使用第一性原理团簇展开方法预测了无序的室温结构,包括不同晶位上的静态和动态阳离子无序。这些预测得到了单晶 X 射线衍射的证实。无序导致带隙从低温下的 1.8eV 降低到实验退火温度 573K 下的 1.5eV。阳离子无序对带隙的剪裁允许针对特定的应用或在梯度太阳能电池中使用,这与与缺陷和无序容忍度相关的材料特性相结合,鼓励进一步研究 IV/V 族卤化亚锡族用于光电应用。