利用肽-纤维素相互作用来定制肽-聚合物杂化材料的层次结构和力学性能。
Leveraging peptide-cellulose interactions to tailor the hierarchy and mechanics of peptide-polymer hybrids.
机构信息
Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
Center for Nanophase Materials Sciences and Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, 37830, Tennessee, USA.
出版信息
J Mater Chem B. 2023 Jun 21;11(24):5594-5606. doi: 10.1039/d3tb00079f.
Inspired by spider silk's hierarchical diversity, we leveraged peptide motifs with the capability to tune structural arrangement for controlling the mechanical properties of a conventional polymer framework. The addition of nanofiller with hydrogen bonding sites was used as another pathway towards hierarchical tuning matrix-filler interactions. Specifically, peptide-polyurea hybrids (PPUs) were combined with cellulose nanocrystals (CNCs) to develop mechanically-tunable nanocomposites tailored matrix-filler interactions (or peptide-cellulose interactions). In this material platform, we explored the effect of these matrix-filler interactions on the secondary structure, hierarchical ordering, and mechanical properties of the peptide hybrid nanocomposites. Interactions between the peptide matrix and CNCs occur in all of the PPU/CNC nanocomposites, preventing α-helical ordering, but promoting inter-molecular hydrogen bonded β-sheet formation. Depending on peptide and CNC content, the Young's modulus varies from 10 to 150 MPa. Unlike conventional cellulose-reinforced polymer nanocomposites, the mechanical properties of these composite materials are dictated by a balance of CNC reinforcement, peptidic ordering, and microphase-separated morphology. This research highlights that leveraging peptide-cellulose interactions is a strategy to create materials with targeted mechanical properties for a specific application using a limited selection of building blocks.
受蜘蛛丝的分级多样性启发,我们利用具有调节结构排列能力的肽基序来控制常规聚合物骨架的机械性能。添加具有氢键结合位点的纳米填充物是实现分级调节基质-填充剂相互作用的另一种途径。具体而言,将肽-聚脲杂化物(PPU)与纤维素纳米晶体(CNC)结合,开发出机械可调的纳米复合材料,定制基质-填充剂相互作用(或肽-纤维素相互作用)。在这个材料平台中,我们探索了这些基质-填充剂相互作用对肽杂化纳米复合材料的二级结构、分级有序和机械性能的影响。肽基质与 CNC 之间的相互作用存在于所有 PPU/CNC 纳米复合材料中,阻止α-螺旋有序化,但促进分子间氢键β-折叠形成。根据肽和 CNC 的含量,杨氏模量从 10 到 150 MPa 不等。与传统的纤维素增强聚合物纳米复合材料不同,这些复合材料的力学性能取决于 CNC 增强、肽有序和微相分离形态的平衡。这项研究强调,利用肽-纤维素相互作用是一种策略,可使用有限数量的构建块为特定应用创建具有目标机械性能的材料。