Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland.
VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland.
Sci Adv. 2019 Sep 13;5(9):eaaw2541. doi: 10.1126/sciadv.aaw2541. eCollection 2019 Sep.
Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into β sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.
丝绸和纤维素是具有强大潜力的生物聚合物,可作为未来的可持续材料。它们还具有互补的特性,适合组合成复合材料,其中纤维素将形成增强组件,而丝则形成坚韧的基质。一个主要的挑战是在组装过程中平衡结构和功能特性。我们使用具有三嵌段结构的重组蛋白,将结构修饰的蜘蛛丝与末端纤维素亲和模块结合在一起。纤维素纳米纤维和三嵌段蛋白的流动排列允许连续纤维的生产。蛋白质组装涉及到相分离成浓缩的凝聚物,随后从无规结构到β片层的构象转换。这一过程使基质具有坚韧的粘性,形成一种具有高强度和刚性的新型复合材料,同时韧性也得到了提高。我们表明,蛋白质工程中的多功能设计可能性能够实现新型的全生物材料,并强调在多个长度尺度上进行控制组装的关键作用。