Karanwal Shekhar
Department of CSE, Graphic Era Deemed to be University, Dehradun, Uttarakhand India.
Int J Inf Technol. 2023;15(4):1885-1894. doi: 10.1007/s41870-023-01245-3. Epub 2023 Apr 16.
Literature suggests that by fusing multiple features there is immense improvement in the recognition rates as compared to the recognition rates of single descriptor. This motivate researchers to develop more and more fused descriptors by joining multiple features. Inspiring from the literature work, the proposed work launch novel local descriptor so-called Improved Local Descriptor (ILD), by joining features of 4 local descriptors. These are LBP, ELBP, MBP and LPQ. LBP captures local details. ELBP capture robust features in horizontal and vertical directions (elliptically) by using 3 × 5 and 5 × 3 patches. MBP minimizes image noise by median comparison to all the pixels and LPQ quantize the frequency components for obtaining feature size. These essential merits of 4 descriptors are encapsulated in one framework in the form of histogram feature. PCA is used further for compression and SVMs and NN are used for classification. Results on ORL, GT and Faces94 confirms strength of ILD, which beats separately implemented descriptors and various benchmark methods.
文献表明,与单个描述符的识别率相比,融合多个特征可使识别率有显著提高。这促使研究人员通过结合多个特征来开发越来越多的融合描述符。受文献工作的启发,本文提出的工作通过结合4种局部描述符的特征,推出了一种新颖的局部描述符——改进局部描述符(ILD)。这4种描述符分别是LBP、ELBP、MBP和LPQ。LBP捕捉局部细节。ELBP通过使用3×5和5×3的块在水平和垂直方向(椭圆形)上捕捉鲁棒特征。MBP通过与所有像素进行中值比较来最小化图像噪声,而LPQ对频率分量进行量化以获得特征大小。这4种描述符的这些基本优点以直方图特征的形式封装在一个框架中。进一步使用主成分分析(PCA)进行压缩,并使用支持向量机(SVM)和神经网络(NN)进行分类。在ORL、GT和Faces94数据集上的结果证实了ILD的优势,它优于单独实现的描述符和各种基准方法。