IEEE Trans Image Process. 2014 Jul;23(7):2877-91. doi: 10.1109/TIP.2014.2321495. Epub 2014 May 2.
In this paper, a novel local pattern descriptor generated by the proposed local vector pattern (LVP) in high-order derivative space is presented for use in face recognition. Based on the vector of each pixel constructed by computing the values between the referenced pixel and the adjacent pixels with diverse distances from different directions, the vector representation of the referenced pixel is generated to provide the 1D structure of micropatterns. With the devise of pairwise direction of vector for each pixel, the LVP reduces the feature length via comparative space transform to encode various spatial surrounding relationships between the referenced pixel and its neighborhood pixels. Besides, the concatenation of LVPs is compacted to produce more distinctive features. To effectively extract more detailed discriminative information in a given subregion, the vector of LVP is refined by varying local derivative directions from the n th-order LVP in (n-1) th-order derivative space, which is a much more resilient structure of micropatterns than standard local pattern descriptors. The proposed LVP is compared with the existing local pattern descriptors including local binary pattern (LBP), local derivative pattern (LDP), and local tetra pattern (LTrP) to evaluate the performances from input grayscale face images. In addition, extensive experiments conducting on benchmark face image databases, FERET, CAS-PEAL, CMU-PIE, Extended Yale B, and LFW, demonstrate that the proposed LVP in high-order derivative space indeed performs much better than LBP, LDP, and LTrP in face recognition.
本文提出了一种新的局部模式描述符,该描述符由高次导数空间中的局部向量模式(LVP)生成,用于人脸识别。基于通过计算参考像素与不同方向上不同距离的相邻像素之间的值而构建的每个像素的向量,生成参考像素的向量表示以提供微模式的 1D 结构。通过为每个像素设计向量的成对方向,LVP 通过比较空间变换来减少特征长度,以对参考像素与其邻域像素之间的各种空间关系进行编码。此外,通过串联 LVP 来产生更具区分性的特征。为了有效地从给定的子区域中提取更详细的判别信息,通过从(n-1)阶导数空间中的第 n 阶 LVP 中改变局部导数方向来细化 LVP 的向量,这是一种比标准局部模式描述符更具弹性的微模式结构。将所提出的 LVP 与现有的局部模式描述符(包括局部二值模式(LBP)、局部导数模式(LDP)和局部四元模式(LTrP))进行比较,以从输入灰度人脸图像评估性能。此外,在基准人脸图像数据库 FERET、CAS-PEAL、CMU-PIE、Extended Yale B 和 LFW 上进行的广泛实验表明,高次导数空间中的所提出的 LVP 确实在人脸识别方面比 LBP、LDP 和 LTrP 表现更好。