School of Biomedical Informatics.
Department of Health Promotion & Behavioral Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
AIDS. 2021 May 1;35(Suppl 1):S65-S73. doi: 10.1097/QAD.0000000000002784.
Young MSM (YMSM) bear a disproportionate burden of HIV infection in the United States and their risks of acquiring HIV may be shaped by complex multilayer social networks. These networks are formed through not only direct contact with social/sex partners but also indirect anonymous contacts encountered when attending social venues. We introduced a new application of a state-of-the-art graph-based deep learning method to predict HIV infection that can identify influential neighbors within these multiple network contexts.
We used empirical network data among YMSM aged 16-29 years old collected from Houston and Chicago in the United States between 2014 and 2016. A computational framework GAT-HIV (Graph Attention Networks for HIV) was proposed to predict HIV infections by identifying influential neighbors within social networks. These networks were formed by multiple relations constituted of social/sex partners and shared venue attendances, and using individual-level variables. Further, GAT-HIV was extended to combine multiple social networks using multigraph GAT methods. A visualization tool was also developed to highlight influential network members for each individual within the multiple social networks.
The multigraph GAT-HIV models obtained average AUC values of 0.776 and 0.824 for Chicago and Houston, respectively, performing better than empirical predictive models (e.g. AUCs of random forest: 0.758 and 0.798). GAT-HIV on single networks also delivered promising prediction performances.
The proposed methods provide a comprehensive and interpretable framework for graph-based modeling that may inform effective HIV prevention intervention strategies among populations most vulnerable to HIV.
在美国,年轻男男性行为者(YMSM)承担了不成比例的 HIV 感染负担,他们感染 HIV 的风险可能受到复杂的多层次社交网络的影响。这些网络不仅通过与社交/性伴侣的直接接触形成,而且还通过在参加社交场所时遇到的间接匿名接触形成。我们引入了一种最先进的基于图的深度学习方法的新应用,该方法可以预测 HIV 感染,从而在这些多重网络环境中识别有影响力的邻居。
我们使用了 2014 年至 2016 年期间在美国休斯顿和芝加哥收集的 16-29 岁 YMSM 的经验网络数据。提出了一种计算框架 GAT-HIV(用于 HIV 的图注意力网络),通过在社交网络中识别有影响力的邻居来预测 HIV 感染。这些网络是由多个关系构成的,这些关系由社交/性伴侣和共享场所出席构成,并使用个体水平变量。此外,GAT-HIV 被扩展为使用多图 GAT 方法结合多个社交网络。还开发了一个可视化工具,用于突出显示多个社交网络中每个个体的有影响力的网络成员。
多图 GAT-HIV 模型分别获得了芝加哥和休斯顿的平均 AUC 值为 0.776 和 0.824,优于经验预测模型(例如随机森林的 AUC:0.758 和 0.798)。单网络上的 GAT-HIV 也提供了有前途的预测性能。
所提出的方法提供了一种基于图的建模的全面和可解释的框架,可能为最易感染 HIV 的人群提供有效的 HIV 预防干预策略。