Suppr超能文献

德莫斯:一种新颖的自动化最优分组方法。在纳米信息学案例研究中的应用。

Deimos: A novel automated methodology for optimal grouping. Application to nanoinformatics case studies.

机构信息

School of Chemical Engineering, National Technical University of Athens, 157 80, Athens, Greece.

出版信息

Mol Inform. 2023 Aug;42(8-9):e2300019. doi: 10.1002/minf.202300019. Epub 2023 Aug 21.

Abstract

In this study we present deimos, a computational methodology for optimal grouping, applied on the read-across prediction of engineered nanomaterials' (ENMs) toxicity-related properties. The method is based on the formulation and the solution of a mixed-integer optimization program (MILP) problem that automatically and simultaneously performs feature selection, defines the grouping boundaries according to the response variable and develops linear regression models in each group. For each group/region, the characteristic centroid is defined in order to allocate untested ENMs to the groups. The deimos MILP problem is integrated in a broader optimization workflow that selects the best performing methodology between the standard multiple linear regression (MLR), the least absolute shrinkage and selection operator (LASSO) models and the proposed deimos multiple-region model. The performance of the suggested methodology is demonstrated through the application to benchmark ENMs datasets and comparison with other predictive modelling approaches. However, the proposed method can be applied to property prediction of other than ENM chemical entities and it is not limited to ENMs toxicity prediction.

摘要

在本研究中,我们提出了 deimos,这是一种用于最优分组的计算方法,应用于工程纳米材料 (ENMs) 毒性相关性质的读通预测。该方法基于混合整数优化程序 (MILP) 问题的公式和解决方案,该问题自动且同时执行特征选择、根据响应变量定义分组边界并在每个组中开发线性回归模型。对于每个组/区域,定义特征质心以将未经测试的 ENMs 分配到组中。deimos MILP 问题集成在更广泛的优化工作流程中,该流程在标准多元线性回归 (MLR)、最小绝对收缩和选择算子 (LASSO) 模型以及提出的 deimos 多区域模型之间选择性能最佳的方法。通过将该方法应用于基准 ENMs 数据集并与其他预测建模方法进行比较,证明了所建议方法的性能。然而,该方法不仅可以应用于 ENMs 毒性预测,还可以应用于其他化学实体的性质预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验