Suppr超能文献

利用 Isalos Analytics 平台进行理化数据的计算富集,以开发 ζ 电位外推预测模型。

Computational enrichment of physicochemical data for the development of a ζ-potential read-across predictive model with Isalos Analytics Platform.

机构信息

NovaMechanics Ltd, 1065 Nicosia, Cyprus; School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom.

NovaMechanics Ltd, 1065 Nicosia, Cyprus.

出版信息

NanoImpact. 2021 Apr;22:100308. doi: 10.1016/j.impact.2021.100308. Epub 2021 Mar 18.

Abstract

The physicochemical characterisation data from a library of 69 engineered nanomaterials (ENMs) has been exploited in silico following enrichment with a set of molecular descriptors that can be easily acquired or calculated using atomic periodicity and other fundamental atomic parameters. Based on the extended set of twenty descriptors, a robust and validated nanoinformatics model has been proposed to predict the ENM ζ-potential. The five critical parameters selected as the most significant for the model development included the ENM size and coating as well as three molecular descriptors, metal ionic radius (r), the sum of metal electronegativity divided by the number of oxygen atoms present in a particular metal oxide (Σχ/n) and the absolute electronegativity (χ), each of which is thoroughly discussed to interpret their influence on ζ-potential values. The model was developed using the Isalos Analytics Platform and is available to the community as a web service through the Horizon 2020 (H2020) NanoCommons Transnational Access services and the H2020 NanoSoveIT Integrated Approach to Testing and Assessment (IATA).

摘要

利用一组分子描述符对 69 种工程纳米材料 (ENM) 的理化特性数据进行了计算机模拟,这些描述符可以使用原子周期性和其他基本原子参数轻松获取或计算。基于扩展的二十个描述符集,提出了一个稳健且经过验证的纳米信息学模型来预测 ENM ζ 电位。选择作为模型开发最重要的五个关键参数包括 ENM 尺寸和涂层以及三个分子描述符,金属离子半径 (r)、特定金属氧化物中金属电负性除以氧原子数的和 (Σχ/n) 和绝对电负性 (χ),对每个参数都进行了深入讨论,以解释它们对 ζ 电位值的影响。该模型是使用 Isalos Analytics Platform 开发的,并且可以通过欧洲地平线 2020 计划(H2020)NanoCommons 跨国访问服务以及 H2020 NanoSoveIT 综合测试和评估方法(IATA)作为 Web 服务提供给社区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验