Suppr超能文献

G×E 相互作用作为毒理学不确定性的基础。

G × E interactions as a basis for toxicological uncertainty.

机构信息

In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany.

Department of Biological Sciences, University of Lausanne, 1005, Lausanne, Switzerland.

出版信息

Arch Toxicol. 2023 Jul;97(7):2035-2049. doi: 10.1007/s00204-023-03500-9. Epub 2023 Jun 1.

Abstract

To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the exposure situation (environment = E), but also on the genetic (G) background of the model (G × E). As a quantitative discipline, toxicology needs to move beyond merely qualitative G × E concepts. Research programs are required that determine the major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory steps. For quantitative approaches to address uncertainties, the concept of "genetic" influence needs a more precise definition. What is usually meant by this term in the context of G × E are the protein functions encoded by the genes. Besides the gene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of past and present "gene expression" influences is summarized here as G. Also, the concept of "environment" needs some re-consideration in situations where exposure timing (E) is pivotal: prolonged or repeated exposure to the insult (chemical, physical, life style) affects G. This implies that it changes the model system. The interaction of G with E might be denoted as G × E. We provide here general explanations and specific examples for this concept and show how it could be applied in the context of New Approach Methodologies (NAM).

摘要

为了将毒理学研究结果从模型系统(例如动物)转移到人类身上,需要应用标准化的安全系数来考虑种内和种间变异性。另一种方法是测量和建模实际化合物特异性不确定性。这个生物学概念假设,所有观察到的毒性不仅取决于暴露情况(环境=E),还取决于模型的遗传(G)背景(G×E)。作为一门定量学科,毒理学需要超越仅仅定性的 G×E 概念。需要制定研究计划,确定影响毒性的主要生物学变异性,并对其相对权重和贡献进行分类。在一种互补的方法中,需要详细的案例研究来探讨遗传背景在定义化学物质的不良影响中的作用。此外,目前对不同生物环境中不良结局途径(AOP)的选择和传播的理解非常有限。为了提高认识,需要特别关注调节和反调节步骤。为了用定量方法解决不确定性问题,“遗传”影响的概念需要更精确的定义。在 G×E 背景下,这个术语通常是指由基因编码的蛋白质功能。除了基因序列外,还应考虑基因表达和功能的调节。这里将过去和现在的“基因表达”影响的扩展概念概括为 G。此外,在暴露时间(E)至关重要的情况下,“环境”的概念也需要重新考虑:长时间或反复暴露于刺激物(化学物质、物理因素、生活方式)会影响 G。这意味着它改变了模型系统。G 与 E 的相互作用可以表示为 G×E。我们在这里为这个概念提供了一般解释和具体示例,并展示了如何将其应用于新方法方法学(NAM)的背景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b72/10256652/4583f7119fff/204_2023_3500_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验