Department of Anaesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
Anesthesia and Big Data Research Group, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
BMC Med Res Methodol. 2023 May 31;23(1):133. doi: 10.1186/s12874-023-01955-z.
PONV reduces patient satisfaction and increases hospital costs as patients remain in the hospital for longer durations. In this study, we build a preliminary artificial intelligence algorithm model to predict early PONV in patients.
We use R for statistical analysis and Python for the machine learning prediction model.
Average characteristic engineering results showed that haloperidol, sex, age, history of smoking, and history of PONV were the first 5 contributing factors in the occurrence of early PONV. Test group results for artificial intelligence prediction of early PONV: in terms of accuracy, the four best algorithms were CNNRNN (0.872), Decision Tree (0.868), SVC (0.866) and adab (0.865); in terms of precision, the three best algorithms were CNNRNN (1.000), adab (0.400) and adab (0.868); in terms of AUC, the top three algorithms were Logistic Regression (0.732), SVC (0.731) and adab (0.722). Finally, we built a website to predict early PONV online using the Streamlit app on the following website: ( https://zhouchengmao-streamlit-app-lsvc-ad-st-app-lsvc-adab-ponv-m9ynsb.streamlit.app/ ).
Artificial intelligence algorithms can predict early PONV, whereas logistic regression, SVC and adab were the top three artificial intelligence algorithms in overall performance. Haloperidol, sex, age, smoking history, and PONV history were the first 5 contributing factors associated with early PONV.
术后恶心呕吐 (PONV) 降低了患者的满意度,并增加了医院的成本,因为患者需要在医院停留更长时间。在这项研究中,我们构建了一个初步的人工智能算法模型,以预测患者的早期 PONV。
我们使用 R 进行统计分析,使用 Python 进行机器学习预测模型。
平均特征工程结果表明,氟哌啶醇、性别、年龄、吸烟史和 PONV 史是早期 PONV 发生的前 5 个主要因素。人工智能预测早期 PONV 的测试组结果:在准确性方面,4 种最佳算法为 CNNRNN(0.872)、决策树(0.868)、SVC(0.866)和 adab(0.865);在精度方面,3 种最佳算法为 CNNRNN(1.000)、adab(0.400)和 adab(0.868);在 AUC 方面,前 3 种算法为 Logistic Regression(0.732)、SVC(0.731)和 adab(0.722)。最后,我们使用 Streamlit 应用程序在以下网站上构建了一个在线预测早期 PONV 的网站:(https://zhouchengmao-streamlit-app-lsvc-ad-st-app-lsvc-adab-ponv-m9ynsb.streamlit.app/)。
人工智能算法可以预测早期 PONV,而逻辑回归、SVC 和 adab 在整体性能方面排名前三。氟哌啶醇、性别、年龄、吸烟史和 PONV 史是与早期 PONV 相关的前 5 个主要因素。