Suppr超能文献

生物信息学和系统生物学方法识别 COVID-19、ARDS 和脓毒症之间的影响。

Bioinformatics and system biology approach to identify the influences among COVID-19, ARDS and sepsis.

机构信息

Department of Gastroenterology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China.

The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, China.

出版信息

Front Immunol. 2023 May 16;14:1152186. doi: 10.3389/fimmu.2023.1152186. eCollection 2023.

Abstract

Background Severe coronavirus disease 2019 (COVID -19) has led to severe pneumonia or acute respiratory distress syndrome (ARDS) worldwide. we have noted that many critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. The molecular mechanisms that underlie COVID-19, ARDS and sepsis are not well understood. The objectives of this study were to analyze potential molecular mechanisms and identify potential drugs for the treatment of COVID-19, ARDS and sepsis using bioinformatics and a systems biology approach. Methods Three RNA-seq datasets (GSE171110, GSE76293 and GSE137342) from Gene Expression Omnibus (GEO) were employed to detect mutual differentially expressed genes (DEGs) for the patients with the COVID-19, ARDS and sepsis for functional enrichment, pathway analysis, and candidate drugs analysis. Results We obtained 110 common DEGs among COVID-19, ARDS and sepsis. ARG1, FCGR1A, MPO, and TLR5 are the most influential hub genes. The infection and immune-related pathways and functions are the main pathways and molecular functions of these three diseases. FOXC1, YY1, GATA2, FOXL, STAT1 and STAT3 are important TFs for COVID-19. mir-335-5p, miR-335-5p and hsa-mir-26a-5p were associated with COVID-19. Finally, the hub genes retrieved from the DSigDB database indicate multiple drug molecules and drug-targets interaction. Conclusion We performed a functional analysis under ontology terms and pathway analysis and found some common associations among COVID-19, ARDS and sepsis. Transcription factors-genes interaction, protein-drug interactions, and DEGs-miRNAs coregulatory network with common DEGs were also identified on the datasets. We believe that the candidate drugs obtained in this study may contribute to the effective treatment of COVID-19.

摘要

背景

严重的 2019 冠状病毒病(COVID-19)已导致全球范围内出现严重肺炎或急性呼吸窘迫综合征(ARDS)。我们注意到,许多患有 COVID-19 的重症患者表现出典型的与脓毒症相关的临床表现,包括多器官功能障碍综合征、凝血功能障碍和脓毒性休克。COVID-19、ARDS 和脓毒症的分子机制尚不清楚。本研究的目的是利用生物信息学和系统生物学方法分析潜在的分子机制,并确定治疗 COVID-19、ARDS 和脓毒症的潜在药物。

方法

从基因表达综合数据库(GEO)中使用三个 RNA-seq 数据集(GSE171110、GSE76293 和 GSE137342)检测 COVID-19、ARDS 和脓毒症患者的相互差异表达基因(DEGs),以进行功能富集、途径分析和候选药物分析。

结果

我们在 COVID-19、ARDS 和脓毒症中获得了 110 个共同的 DEGs。ARG1、FCGR1A、MPO 和 TLR5 是最具影响力的枢纽基因。感染和免疫相关途径和功能是这三种疾病的主要途径和分子功能。FOXC1、YY1、GATA2、FOXL、STAT1 和 STAT3 是 COVID-19 的重要转录因子。miR-335-5p、miR-335-5p 和 hsa-mir-26a-5p 与 COVID-19 相关。最后,从 DSigDB 数据库中检索到的枢纽基因表明存在多种药物分子和药物-靶标相互作用。

结论

我们进行了基于本体术语和途径分析的功能分析,发现 COVID-19、ARDS 和脓毒症之间存在一些共同关联。还在数据集上确定了转录因子-基因相互作用、蛋白质-药物相互作用以及具有共同 DEGs 的 DEGs-miRNAs 共调控网络。我们相信,本研究中获得的候选药物可能有助于 COVID-19 的有效治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08bb/10227520/e2d7bb904aeb/fimmu-14-1152186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验