Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
PLoS One. 2023 Jun 1;18(6):e0286406. doi: 10.1371/journal.pone.0286406. eCollection 2023.
Exposure to traffic-related air pollutants (TRAPs) has been associated with numerous adverse health effects. TRAP concentrations are highest meters away from major roads, and disproportionately affect minority (i.e., non-white) populations often considered the most vulnerable to TRAP exposure. To demonstrate an improved assessment of on-road emissions and to quantify exposure inequity in this population, we develop and apply a hybrid data fusion approach that utilizes the combined strength of air quality observations and regional/local scale models to estimate air pollution exposures at census block resolution for the entire U.S. We use the regional photochemical grid model CMAQ (Community Multiscale Air Quality) to predict the spatiotemporal impacts at local/regional scales, and the local scale dispersion model, R-LINE (Research LINE source) to estimate concentrations that capture the sharp TRAP gradients from roads. We further apply the Regionalized Air quality Model Performance (RAMP) Hybrid data fusion technique to consider the model's nonhomogeneous, nonlinear performance to not only improve exposure estimates, but also achieve significant model performance improvement. With a R2 of 0.51 for PM2.5 and 0.81 for NO2, the RAMP hybrid method improved R2 by ~0.2 for both pollutants (an increase of up to ~70% for PM2.5 and ~31% NO2). Using the RAMP Hybrid method, we estimate 264,516 [95% confidence interval [CI], 223,506-307,577] premature deaths attributable to PM2.5 from all sources, a ~1% overall decrease in CMAQ-estimated premature mortality compared to RAMP Hybrid, despite increases and decreases in some locations. For NO2, RAMP Hybrid estimates 138,550 [69,275-207,826] premature deaths, a ~19% increase (22,576 [11,288 - 33,864]) compared to CMAQ. Finally, using our RAMP hybrid method to estimate exposure inequity across the U.S., we estimate that Minorities within 100 m from major roads are exposed to up to 15% more PM2.5 and up to 35% more NO2 than their White counterparts.
接触与交通相关的空气污染物(TRAPs)与许多不良健康影响有关。TRAP 浓度在远离主要道路的几米处最高,并且不成比例地影响少数族裔(即非白人)人群,这些人群通常被认为最容易受到 TRAP 暴露的影响。为了更好地评估道路上的排放情况,并量化该人群的暴露不公平性,我们开发并应用了一种混合数据融合方法,该方法利用空气质量观测和区域/本地尺度模型的综合优势,以估算整个美国的普查块分辨率的空气污染暴露情况。我们使用区域光化学网格模型 CMAQ(社区多尺度空气质量模型)来预测当地/区域尺度的时空影响,使用本地尺度的扩散模型 R-LINE(研究线源)来估计能够捕捉到来自道路的尖锐 TRAP 梯度的浓度。我们进一步应用区域空气质量模型性能(RAMP)混合数据融合技术来考虑模型的非均匀、非线性性能,不仅可以提高暴露估计值,还可以显著提高模型性能。对于 PM2.5,R2 为 0.51,对于 NO2,R2 为 0.81,RAMP 混合方法将两种污染物的 R2 提高了约 0.2(PM2.5 增加高达约 70%,NO2 增加约 31%)。使用 RAMP 混合方法,我们估计了 264516 例(95%置信区间 [CI],223506-307577)归因于 PM2.5 的过早死亡,与 RAMP 混合方法相比,CMAQ 估计的过早死亡率整体下降了约 1%,尽管在一些地点有所增加和减少。对于 NO2,RAMP 混合方法估计有 138550 例(69275-207826)过早死亡,与 CMAQ 相比增加了约 19%(22576 [11288-33864])。最后,使用我们的 RAMP 混合方法来估计美国各地的暴露不公平性,我们估计距离主要道路 100 米以内的少数族裔接触的 PM2.5 比他们的白人同行多 15%,接触的 NO2 比他们的白人同行多 35%。