Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Risk Anal. 2017 Dec;37(12):2420-2434. doi: 10.1111/risa.12775. Epub 2017 Feb 28.
To quantify the on-road PM -related premature mortality at a national scale, previous approaches to estimate concentrations at a 12-km × 12-km or larger grid cell resolution may not fully characterize concentration hotspots that occur near roadways and thus the areas of highest risk. Spatially resolved concentration estimates from on-road emissions to capture these hotspots may improve characterization of the associated risk, but are rarely used for estimating premature mortality. In this study, we compared the on-road PM -related premature mortality in central North Carolina with two different concentration estimation approaches-(i) using the Community Multiscale Air Quality (CMAQ) model to model concentration at a coarser resolution of a 36-km × 36-km grid resolution, and (ii) using a hybrid of a Gaussian dispersion model, CMAQ, and a space-time interpolation technique to provide annual average PM concentrations at a Census-block level (∼105,000 Census blocks). The hybrid modeling approach estimated 24% more on-road PM -related premature mortality than CMAQ. The major difference is from the primary on-road PM where the hybrid approach estimated 2.5 times more primary on-road PM -related premature mortality than CMAQ due to predicted exposure hotspots near roadways that coincide with high population areas. The results show that 72% of primary on-road PM premature mortality occurs within 1,000 m from roadways where 50% of the total population resides, highlighting the importance to characterize near-road primary PM and suggesting that previous studies may have underestimated premature mortality due to PM from traffic-related emissions.
为了量化全国范围内道路相关 PM 造成的过早死亡人数,之前使用 12 公里×12 公里或更大网格单元分辨率来估计浓度的方法可能无法充分描述发生在道路附近的浓度热点,以及因此而产生的高风险区域。从道路排放源获取的具有空间分辨率的浓度估算值可以更好地描述相关风险,但很少用于估计过早死亡人数。在这项研究中,我们比较了北卡罗来纳州中部地区由于道路相关 PM 造成的过早死亡人数,采用了两种不同的浓度估算方法:(i)使用社区多尺度空气质量模型(CMAQ)以 36 公里×36 公里的粗分辨率来模拟浓度,以及(ii)使用高斯扩散模型、CMAQ 和时空插值技术的混合方法来提供普查区块级别的年平均 PM 浓度(约 105000 个普查区块)。混合建模方法估计的道路相关 PM 造成的过早死亡人数比 CMAQ 多 24%。主要差异在于主要道路相关 PM,混合方法估计的主要道路相关 PM 造成的过早死亡人数比 CMAQ 多 2.5 倍,这是因为预测到的道路附近存在与高人口区域重合的暴露热点。结果表明,72%的主要道路相关 PM 过早死亡发生在距离道路 1000 米以内的范围内,而 50%的总人口居住在该范围内,这突出表明了对道路附近主要 PM 进行特征描述的重要性,并表明之前的研究可能低估了与交通相关排放有关的 PM 造成的过早死亡人数。