Department of Computer Science, Technical University of Munich, Munich, Germany.
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy; Informatics Department, USI University of Lugano, Lugano, Switzerland.
Med Image Anal. 2023 Aug;88:102839. doi: 10.1016/j.media.2023.102839. Epub 2023 May 13.
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain. Two prominent examples are molecule property prediction and brain connectome analysis. Importantly, recent works have shown that considering relationships between input data samples has a positive regularizing effect on the downstream task in healthcare applications. These relationships are naturally modeled by a (possibly unknown) graph structure between input samples. In this work, we propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications that exploits the graph representation of the input data samples and their latent relation. We assume an initially unknown latent-graph structure between graph-valued input data and propose to learn a parametric model for message passing within and across input graph samples, end-to-end along with the latent structure connecting the input graphs. Further, we introduce a Node Degree Distribution Loss (NDDL) that regularizes the predicted latent relationships structure. This regularization can significantly improve the downstream task. Moreover, the obtained latent graph can represent patient population models or networks of molecule clusters, providing a level of interpretability and knowledge discovery in the input domain, which is of particular value in healthcare.
图是一种强大的工具,可用于表示和分析医疗领域中无处不在的非结构化、非欧式数据。两个突出的例子是分子性质预测和脑连接组分析。重要的是,最近的工作表明,考虑输入数据样本之间的关系对医疗保健应用中的下游任务具有积极的正则化效果。这些关系可以通过输入样本之间的(可能未知的)图结构自然地建模。在这项工作中,我们提出了 Graph-in-Graph(GiG),这是一种用于蛋白质分类和脑成像应用的神经网络架构,利用输入数据样本的图表示及其潜在关系。我们假设图值输入数据之间存在一个初始未知的潜在图结构,并提出学习在输入图样本内和跨输入图样本进行消息传递的参数模型,沿着连接输入图的潜在结构端到端进行学习。此外,我们引入了节点度分布损失(NDDL),以正则化预测的潜在关系结构。这种正则化可以显著提高下游任务的性能。此外,所得到的潜在图可以表示患者群体模型或分子簇网络,在输入域中提供一定程度的可解释性和知识发现,这在医疗保健中具有特别重要的价值。