Universidade de São Paulo- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - FFCLRP - SP. Departamento de Química, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil.
Universidade de São Paulo - Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - SP. Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. Bandeirantes, 3900, CEP 14040-030, Ribeirão Preto, SP, Brazil.
Chemosphere. 2023 Sep;335:139073. doi: 10.1016/j.chemosphere.2023.139073. Epub 2023 May 31.
Pseudomonas aeruginosa can produce pigments, which mediate external electron transfer (EET). Depending on the mediator, this species can be explored in bioelectrosystems to harvest energy or to obtain chemicals from residual organic compounds. This study has compared the performance of microbial fuel cells (MFCs) inoculated with a Pseudomonas aeruginosa isolate, namely EW603 or EW819, which produce pyocyanin and pyoverdine, respectively. The efficiency of these MFCs in glycerol, a typical residue of biodiesel production, were also compared. The MFCs exhibited different performances. The maximum voltage was 411 and 281 mV m, the power density was 40.1 and 21.3 mW m, and the coulombic efficiency was 5.16 and 1.49% for MFC-EW603 and MFC-EW819, respectively. MFC-EW603 and MFC-EW819 achieved maximum current at 560 and 2200 Ω, at 141.2 and 91.3 mA m, respectively. When the system was operated at the respective maximum current output, MFC-EW603 consumed the total glycerol content (11 mmol L), and no products could be detected after 50 h. In turn, acetic and butyric acids were detected at the end of MFC-EW819 operation (75 h). The results suggested that P. aeruginosa metabolism can be steered in the MFC to generate current or microbial products depending on the pigment-producing strain and the conditions applied to the system, such as the external resistance. In addition, gene cluster pathways related to phenazine production (phzA and phzB) and other electrogenic-related genes (mexGHI-opmB) were identified in the strain genomes, supporting the findings. These results open new possibilities for using glycerol in bioelectrochemical systems.
铜绿假单胞菌可以产生色素,介导外部电子转移(EET)。根据媒介物的不同,该物种可以在生物电化学系统中被探索以收获能量,或从残留的有机化合物中获得化学物质。本研究比较了接种铜绿假单胞菌分离株 EW603 或 EW819 的微生物燃料电池(MFC)的性能,这两种分离株分别产生绿脓菌素和吡咯菌素。还比较了这些 MFC 在甘油(生物柴油生产的典型残留物)中的效率。MFC 表现出不同的性能。最大电压分别为 411 和 281 mV m,最大功率密度分别为 40.1 和 21.3 mW m,MFC-EW603 和 MFC-EW819 的库仑效率分别为 5.16%和 1.49%。MFC-EW603 和 MFC-EW819 在 560 和 2200 Ω时达到最大电流,分别为 141.2 和 91.3 mA m。当系统在各自的最大电流输出下运行时,MFC-EW603 消耗了总甘油含量(11 mmol L),50 小时后没有检测到产物。相反,在 MFC-EW819 运行结束时(75 小时)检测到了乙酸和丁酸。结果表明,根据色素产生菌株和施加于系统的条件(例如外部电阻),可以在 MFC 中调节铜绿假单胞菌的代谢以产生电流或微生物产物。此外,在菌株基因组中鉴定了与吩嗪生产(phzA 和 phzB)和其他电生成相关基因(mexGHI-opmB)相关的基因簇途径,支持了这一发现。这些结果为在生物电化学系统中使用甘油开辟了新的可能性。