Suppr超能文献

基于代谢组学生物标志物的妊娠期糖尿病早期预测模型。

An early prediction model for gestational diabetes mellitus based on metabolomic biomarkers.

作者信息

Razo-Azamar Melissa, Nambo-Venegas Rafael, Meraz-Cruz Noemí, Guevara-Cruz Martha, Ibarra-González Isabel, Vela-Amieva Marcela, Delgadillo-Velázquez Jaime, Santiago Xanic Caraza, Escobar Rafael Figueroa, Vadillo-Ortega Felipe, Palacios-González Berenice

机构信息

Unidad de Vinculación Científica, Facultad de Medicina UNAM en Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Tlalpan, Arenal Tepepan, 14610, Mexico City, México.

Laboratorio de Envejecimiento Saludable del INMEGEN en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), 14330, Mexico City, México.

出版信息

Diabetol Metab Syndr. 2023 Jun 1;15(1):116. doi: 10.1186/s13098-023-01098-7.

Abstract

BACKGROUND

Gestational diabetes mellitus (GDM) represents the main metabolic alteration during pregnancy. The available methods for diagnosing GDM identify women when the disease is established, and pancreatic beta-cell insufficiency has occurred.The present study aimed to generate an early prediction model (under 18 weeks of gestation) to identify those women who will later be diagnosed with GDM.

METHODS

A cohort of 75 pregnant women was followed during gestation, of which 62 underwent normal term pregnancy and 13 were diagnosed with GDM. Targeted metabolomics was used to select serum biomarkers with predictive power to identify women who will later be diagnosed with GDM.

RESULTS

Candidate metabolites were selected to generate an early identification model employing a criterion used when performing Random Forest decision tree analysis. A model composed of two short-chain acylcarnitines was generated: isovalerylcarnitine (C5) and tiglylcarnitine (C5:1). An analysis by ROC curves was performed to determine the classification performance of the acylcarnitines identified in the study, obtaining an area under the curve (AUC) of 0.934 (0.873-0.995, 95% CI). The model correctly classified all cases with GDM, while it misclassified ten controls as in the GDM group. An analysis was also carried out to establish the concentrations of the acylcarnitines for the identification of the GDM group, obtaining concentrations of C5 in a range of 0.015-0.25 μmol/L and of C5:1 with a range of 0.015-0.19 μmol/L.

CONCLUSION

Early pregnancy maternal metabolites can be used to screen and identify pregnant women who will later develop GDM. Regardless of their gestational body mass index, lipid metabolism is impaired even in the early stages of pregnancy in women who develop GDM.

摘要

背景

妊娠期糖尿病(GDM)是孕期主要的代谢改变。现有的GDM诊断方法是在疾病已确诊且胰腺β细胞功能不全已经发生时识别女性患者。本研究旨在建立一个早期预测模型(妊娠18周前),以识别那些随后会被诊断为GDM的女性。

方法

对75名孕妇在孕期进行随访,其中62名足月妊娠正常,13名被诊断为GDM。采用靶向代谢组学方法选择具有预测能力的血清生物标志物,以识别那些随后会被诊断为GDM的女性。

结果

选择候选代谢物,采用随机森林决策树分析时使用的标准建立早期识别模型。生成了一个由两种短链酰基肉碱组成的模型:异戊酰肉碱(C5)和tiglylcarnitine(C5:1)。通过ROC曲线分析来确定研究中鉴定出的酰基肉碱的分类性能,曲线下面积(AUC)为0.934(0.873 - 0.995,95%CI)。该模型正确分类了所有GDM病例,但将10名对照误分类为GDM组。还进行了一项分析,以确定用于识别GDM组的酰基肉碱浓度,得到C5浓度范围为0.015 - 0.25μmol/L,C5:1浓度范围为0.015 - 0.19μmol/L。

结论

孕早期母体代谢物可用于筛查和识别随后会发生GDM的孕妇。无论其孕期体重指数如何,发生GDM的女性即使在孕早期脂质代谢也会受损。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea3/10234027/296c0a4bea87/13098_2023_1098_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验