Programa de Pós-Graduação em Engenharia da Computação, Universidade de Pernambuco, Recife, Brazil.
Master en Genética Asistencial, Universitat Autònoma de Barcelona, Barcelona, Spain.
PLoS One. 2023 Jun 2;18(6):e0276150. doi: 10.1371/journal.pone.0276150. eCollection 2023.
Communicable diseases represent a huge economic burden for healthcare systems and for society. Sexually transmitted infections (STIs) are a concerning issue, especially in developing and underdeveloped countries, in which environmental factors and other determinants of health play a role in contributing to its fast spread. In light of this situation, machine learning techniques have been explored to assess the incidence of syphilis and contribute to the epidemiological surveillance in this scenario.
The main goal of this work is to evaluate the performance of different machine learning models on predicting undesirable outcomes of congenital syphilis in order to assist resources allocation and optimize the healthcare actions, especially in a constrained health environment.
We use clinical and sociodemographic data from pregnant women that were assisted by a social program in Pernambuco, Brazil, named Mãe Coruja Pernambucana Program (PMCP). Based on a rigorous methodology, we propose six experiments using three feature selection techniques to select the most relevant attributes, pre-process and clean the data, apply hyperparameter optimization to tune the machine learning models, and train and test models to have a fair evaluation and discussion.
The AdaBoost-BODS-Expert model, an Adaptive Boosting (AdaBoost) model that used attributes selected by health experts, presented the best results in terms of evaluation metrics and acceptance by health experts from PMCP. By using this model, the results are more reliable and allows adoption on a daily usage to classify possible outcomes of congenital syphilis using clinical and sociodemographic data.
传染病对医疗系统和社会造成了巨大的经济负担。性传播感染(STIs)是一个令人关注的问题,特别是在发展中国家和欠发达国家,环境因素和其他健康决定因素在其快速传播中起着一定的作用。鉴于这种情况,已经探索了机器学习技术来评估梅毒的发病率,并为这种情况下的流行病学监测做出贡献。
这项工作的主要目标是评估不同机器学习模型在预测先天性梅毒不良结局方面的性能,以协助资源分配并优化医疗保健措施,特别是在资源有限的医疗环境中。
我们使用了巴西伯南布哥州名为“Mãe Coruja Pernambucana 计划(PMCP)”的社会项目中接受帮助的孕妇的临床和社会人口统计学数据。基于严格的方法,我们提出了六个实验,使用三种特征选择技术来选择最相关的属性,预处理和清理数据,应用超参数优化来调整机器学习模型,并训练和测试模型,以进行公平的评估和讨论。
AdaBoost-BODS-Expert 模型是一种自适应增强(AdaBoost)模型,使用健康专家选择的属性,在评估指标和 PMCP 健康专家的接受程度方面表现出最佳结果。通过使用这种模型,结果更加可靠,并允许在日常使用中采用,使用临床和社会人口统计学数据对先天性梅毒的可能结局进行分类。