R&D Department, BioTissue, Miami, FL, 33126, USA.
Department of Ophthalmology, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA.
Ocul Surf. 2023 Jul;29:301-310. doi: 10.1016/j.jtos.2023.05.004. Epub 2023 Jun 1.
Human corneal endothelial cells (HCECs) play a significant role in maintaining visual function. However, these cells are notorious for their limited proliferative capacity in vivo. Current treatment of corneal endothelial dysfunction resorts to corneal transplantation. Herein we describe an ex vivo engineering method to manufacture HCEC grafts suitable for transplantation through reprogramming into neural crest progenitors.
HCECs were isolated by collagenase A from stripped Descemet membrane of cadaveric corneoscleral rims, and induced reprogramming via knockdown with p120 and Kaiso siRNAs on collagen IV-coated atelocollagen. Engineered HCEC grafts were released after assessing their identity, potency, viability, purity and sterility. Phase contrast was used for monitoring cell shape, graft size, and cell density. Immunostaining was used to determine the normal HCEC phenotype with expression of N-cadherin, ZO-1, ATPase, acetyl-α-tubulin, γ-tubulin, p75NTR, α-catenin, β-catenin, and F-actin. Stability of manufactured HCEC graft was evaluated after transit and storage for up to 3 weeks. The pump function of HCEC grafts was measured by lactate efflux.
One HCEC graft suitable for corneal transplantation was generated from 1/8th of the donor corneoscleral rim with normal hexagonal cell shape, density, and phenotype. The manufactured grafts were stable for up to 3 weeks at 37 °C or up to 1 week at 22 °C in MESCM medium and after transcontinental shipping at room temperature by retaining normal morphology (hexagonal, >2000 cells/mm, >8 mm diameter), phenotype, and pump function.
This regenerative strategy through knockdown with p120 and Kaiso siRNAs can be used to manufacture HCEC grafts with normal phenotype, morphology and pump function following prolonged storage and shipping.
人眼角膜内皮细胞(HCEC)在维持视觉功能方面发挥着重要作用。然而,这些细胞在体内的增殖能力有限。目前,角膜内皮功能障碍的治疗方法是进行角膜移植。本文描述了一种通过重编程为神经嵴祖细胞来制造适合移植的 HCEC 移植物的体外工程方法。
从尸体角膜缘的剥离的 Descemet 膜中通过胶原酶 A 分离 HCEC,并通过在胶原蛋白 IV 涂覆的去端胶原上用 p120 和 Kaiso siRNA 进行敲低来诱导重编程。在评估其身份、效力、活力、纯度和无菌性后,释放工程化的 HCEC 移植物。相差显微镜用于监测细胞形态、移植物大小和细胞密度。免疫染色用于确定正常的 HCEC 表型,表达 N-钙粘蛋白、ZO-1、ATP 酶、乙酰-α-微管蛋白、γ-微管蛋白、p75NTR、α-连环蛋白、β-连环蛋白和 F-肌动蛋白。评估制造的 HCEC 移植物在运输和储存长达 3 周后的稳定性。通过乳酸盐外排测量 HCEC 移植物的泵功能。
从 1/8 个供体角膜缘产生了一个适合角膜移植的 HCEC 移植物,具有正常的六边形细胞形状、密度和表型。在 37°C 下,在 MESCM 培养基中储存长达 3 周,或在 22°C 下储存长达 1 周,或在室温下通过大陆间运输,制造的移植物保持正常形态(六边形、>2000 个细胞/mm、>8mm 直径)、表型和泵功能。
通过 p120 和 Kaiso siRNA 的敲低这种再生策略可用于制造具有正常表型、形态和泵功能的 HCEC 移植物,这些移植物可以在长时间储存和运输后使用。