Zhu Ying-Ting, Tighe Sean, Chen Shuang-Ling, John Thomas, Kao Winston Y, Tseng Scheffer C G
R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL, 33173, USA.
Department of Ophthalmology, Loyola University at Chicago, 2160 1 Ave, Maywood, IL 60153, USA.
Curr Ophthalmol Rep. 2015 Sep;3(3):207-217. doi: 10.1007/s40135-015-0077-5. Epub 2015 Jun 27.
Human corneal endothelial cells (HCEC) play a pivotal role in maintaining corneal transparency. Unlike in other species, HCEC are notorious for their limited proliferative capacity after diseases, injury, aging, and surgery. Persistent HCEC dysfunction leads to sight-threatening bullous keratopathy with either an insufficient cell density or retrocorneal membrane due to endothelial-mesenchymal transition (EMT). Presently, the only solution to restore vision in eyes inflicted with bullous keratopathy or retrocorneal membrane relies upon transplantation of a cadaver human donor cornea containing a healthy corneal endothelium. Due to a severe global shortage of donor corneas, in conjunction with an increasing trend toward endothelial keratoplasty, it is opportune to develop a tissue engineering strategy to produce HCEC grafts. Prior attempts of producing these grafts by unlocking the contact inhibition-mediated mitotic block using trypsin-EDTA and culturing of single HCEC in a bFGF-containing medium run the risk of losing the normal phenotype to EMT by activating canonical Wnt signaling and TGF-β signaling. Herein, we summarize our novel approach in engineering HCEC grafts based on selective activation of p120-Kaiso signaling that is coordinated with activation of Rho-ROCK-canonical BMP signaling to reprogram HCEC into neural crest progenitors. Successful commercialization of this engineering technology will not only fulfill the global unmet need but also encourage the scientific community to re-think how cell-cell junctions can be safely perturbed to uncover novel therapeutic potentials in other model systems.
人角膜内皮细胞(HCEC)在维持角膜透明度方面起着关键作用。与其他物种不同,HCEC因在疾病、损伤、衰老和手术后增殖能力有限而声名狼藉。持续的HCEC功能障碍会导致威胁视力的大泡性角膜病变,这是由于细胞密度不足或内皮-间充质转化(EMT)导致的角膜后膜所致。目前,恢复患有大泡性角膜病变或角膜后膜的眼睛视力的唯一解决方案依赖于移植含有健康角膜内皮的尸体人类供体角膜。由于全球供体角膜严重短缺,再加上内皮角膜移植的趋势不断增加,开发一种组织工程策略来生产HCEC移植物是适时的。此前通过使用胰蛋白酶-EDTA解除接触抑制介导的有丝分裂阻滞并在含bFGF的培养基中培养单个HCEC来生产这些移植物的尝试,存在通过激活经典Wnt信号和TGF-β信号使正常表型因EMT而丧失的风险。在此,我们总结了我们基于p120-Kaiso信号选择性激活来工程化HCEC移植物的新方法,该方法与Rho-ROCK-经典BMP信号的激活相协调,将HCEC重编程为神经嵴祖细胞。这项工程技术的成功商业化不仅将满足全球未满足的需求,还将鼓励科学界重新思考如何安全地扰动细胞间连接,以在其他模型系统中发现新的治疗潜力。