College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
CNS Neurosci Ther. 2023 Oct;29(10):2775-2786. doi: 10.1111/cns.14280. Epub 2023 Jun 2.
Complex cellular communications between glial cells and neurons are critical for brain normal function and disorders, and single-cell level RNA-sequencing datasets display more advantages for analyzing cell communications. Therefore, it is necessary to systematically explore brain cell communications when considering factors such as sex and brain region.
We extracted a total of 1,039,459 cells derived from 28 brain single-cell RNA-sequencing (scRNA-seq) or single-nucleus RNA-sequencing (snRNA-seq) datasets from the GEO database, including 12 human and 16 mouse datasets. These datasets were further divided into 71 new sub-datasets when considering disease, sex, and region conditions. In the meanwhile, we integrated four methods to evaluate ligand-receptor interaction score among six major brain cell types (microglia, neuron, astrocyte, oligodendrocyte, OPC, and endothelial cell).
For Alzheimer's disease (AD), disease-specific ligand-receptor pairs when compared with normal sub-datasets, such as SEMA4A-NRP1, were identified. Furthermore, we explored the sex- and region-specific cell communications and identified that WNT5A-ROR1 among microglia cells displayed close communications in male, and SPP1-ITGAV displayed close communications in the meninges region from microglia to neurons. Furthermore, based on the AD-specific cell communications, we constructed a model for AD early prediction and confirmed the predictive performance using multiple independent datasets. Finally, we developed an online platform for researchers to explore brain condition-specific cell communications.
This research provided a comprehensive study to explore brain cell communications, which could reveal novel biological mechanisms involved in normal brain function and neurodegenerative diseases such as AD.
神经胶质细胞与神经元之间复杂的细胞通讯对大脑的正常功能和紊乱至关重要,单细胞水平的 RNA 测序数据集在分析细胞通讯方面显示出更多的优势。因此,在考虑性别和大脑区域等因素时,有必要系统地探索大脑细胞通讯。
我们从 GEO 数据库中提取了总共 1039459 个来自 28 个大脑单细胞 RNA 测序(scRNA-seq)或单核 RNA 测序(snRNA-seq)数据集的细胞,包括 12 个人类和 16 个小鼠数据集。当考虑疾病、性别和区域条件时,这些数据集进一步分为 71 个新的子数据集。同时,我们整合了四种方法来评估六种主要脑细胞类型(小胶质细胞、神经元、星形胶质细胞、少突胶质细胞、OPC 和内皮细胞)之间的配体-受体相互作用评分。
对于阿尔茨海默病(AD),与正常子数据集相比,鉴定出了疾病特异性的配体-受体对,例如 SEMA4A-NRP1。此外,我们还探索了性别和区域特异性的细胞通讯,并鉴定出小胶质细胞中的 WNT5A-ROR1 之间存在紧密通讯,而小胶质细胞到神经元的脑膜区域中的 SPP1-ITGAV 也存在紧密通讯。此外,基于 AD 特异性的细胞通讯,我们构建了一个用于 AD 早期预测的模型,并使用多个独立数据集验证了该模型的预测性能。最后,我们开发了一个在线平台,供研究人员探索大脑特定条件下的细胞通讯。
本研究全面探索了大脑细胞通讯,这可能揭示了正常大脑功能和神经退行性疾病(如 AD)中涉及的新的生物学机制。