Suppr超能文献

从基因表达中破译细胞间的相互作用和通讯。

Deciphering cell-cell interactions and communication from gene expression.

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.

Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA.

出版信息

Nat Rev Genet. 2021 Feb;22(2):71-88. doi: 10.1038/s41576-020-00292-x. Epub 2020 Nov 9.

Abstract

Cell-cell interactions orchestrate organismal development, homeostasis and single-cell functions. When cells do not properly interact or improperly decode molecular messages, disease ensues. Thus, the identification and quantification of intercellular signalling pathways has become a common analysis performed across diverse disciplines. The expansion of protein-protein interaction databases and recent advances in RNA sequencing technologies have enabled routine analyses of intercellular signalling from gene expression measurements of bulk and single-cell data sets. In particular, ligand-receptor pairs can be used to infer intercellular communication from the coordinated expression of their cognate genes. In this Review, we highlight discoveries enabled by analyses of cell-cell interactions from transcriptomic data and review the methods and tools used in this context.

摘要

细胞间相互作用协调着生物体的发育、稳态和单细胞功能。当细胞不能正常相互作用或不能正确解码分子信息时,疾病就会发生。因此,鉴定和量化细胞间信号通路已成为不同学科中常见的分析方法。蛋白质-蛋白质相互作用数据库的扩展和 RNA 测序技术的最新进展使得人们可以从批量和单细胞数据集的基因表达测量中对细胞间信号进行常规分析。特别是,配体-受体对可以用于从它们同源基因的协调表达中推断细胞间通讯。在这篇综述中,我们强调了从转录组数据中分析细胞-细胞相互作用所带来的发现,并回顾了这方面使用的方法和工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de78/7649713/aa542c881132/41576_2020_292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验