Xu Xiangdong, Martín-Yerga Daniel, Grant Nicholas E, West Geoff, Pain Sophie L, Kang Minkyung, Walker Marc, Murphy John D, Unwin Patrick R
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
The Faraday Institution, Quad One, Harwell Campus, Didcot, OX11 0RA, UK.
Small. 2023 Oct;19(40):e2303442. doi: 10.1002/smll.202303442. Epub 2023 Jun 3.
Understanding the solid electrolyte interphase (SEI) formation and (de)lithiation phenomena at silicon (Si) electrodes is key to improving the performance and lifetime of Si-based lithium-ion batteries. However, these processes remain somewhat elusive, and, in particular, the role of Si surface termination merits further consideration. Here, scanning electrochemical cell microscopy (SECCM) is used in a glovebox, followed by secondary ion mass spectrometry (SIMS) at identical locations to study the local electrochemical behavior and associated SEI formation, comparing Si (100) with a native oxide layer (SiO /Si) and etched with hydrofluoric acid (HF-Si). HF-Si shows greater spatial electrochemical heterogeneity and inferior lithiation reversibility than SiO /Si. This is attributed to a weakly passivating SEI and irreversible lithium trapping at the Si surface. Combinatorial screening of charge/discharge cycling by SECCM with co-located SIMS reveals SEI chemistry as a function of depth. While the SEI thickness is relatively independent of the cycle number, the chemistry - particularly in the intermediate layers - depends on the number of cycles, revealing the SEI to be dynamic during cycling. This work serves as a foundation for the use of correlative SECCM/SIMS as a powerful approach to gain fundamental insights on complex battery processes at the nano- and microscales.
了解硅(Si)电极上固态电解质界面(SEI)的形成及(脱)锂现象是提高硅基锂离子电池性能和寿命的关键。然而,这些过程仍有些难以捉摸,特别是硅表面终止的作用值得进一步考虑。在此,在手套箱中使用扫描电化学池显微镜(SECCM),随后在相同位置进行二次离子质谱(SIMS),以研究局部电化学行为及相关的SEI形成,将具有天然氧化层(SiO /Si)的Si(100)与用氢氟酸蚀刻的(HF-Si)进行比较。与SiO /Si相比,HF-Si表现出更大的空间电化学不均匀性和较差的锂化可逆性。这归因于SEI的弱钝化以及硅表面不可逆的锂捕获。通过SECCM与共定位SIMS对充电/放电循环进行组合筛选,揭示了SEI化学性质随深度的变化。虽然SEI厚度相对独立于循环次数,但化学性质——特别是在中间层——取决于循环次数,这表明SEI在循环过程中是动态的。这项工作为使用相关的SECCM/SIMS作为一种强大的方法来深入了解纳米和微观尺度上复杂的电池过程奠定了基础。