Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
Government College of Pharmacy, Amravati, Maharastra 444604, India.
Mitochondrion. 2023 Jul;71:83-92. doi: 10.1016/j.mito.2023.05.007. Epub 2023 Jun 1.
Misfolded proteins in the central nervous system can induce oxidative damage, which can contribute to neurodegenerative diseases in the mitochondria. Neurodegenerative patients face early mitochondrial dysfunction, impacting energy utilization. Amyloid-ß and tau problems both have an effect on mitochondria, which leads to mitochondrial malfunction and, ultimately, the onset of Alzheimer's disease. Cellular oxygen interaction yields reactive oxygen species within mitochondria, initiating oxidative damage to mitochondrial constituents. Parkinson's disease, linked to oxidative stress, α-synuclein aggregation, and inflammation, results from reduced brain mitochondria activity. Mitochondrial dynamics profoundly influence cellular apoptosis via distinct causative mechanisms. The condition known as Huntington's disease is characterized by an expansion of polyglutamine, primarily impactingthe cerebral cortex and striatum. Research has identified mitochondrial failure as an early pathogenic mechanism contributing to HD's selective neurodegeneration. The mitochondria are organelles that exhibit dynamism by undergoing fragmentation and fusion processes to attain optimal bioenergetic efficiency. They can also be transported along microtubules and regulateintracellular calcium homeostasis through their interaction with the endoplasmic reticulum. Additionally, the mitochondria produce free radicals. The functions of eukaryotic cells, particularly in neurons, have significantly deviated from the traditionally assigned role of cellular energy production. Most of them areimpaired in HD, which may lead to neuronal dysfunction before symptoms manifest. This article summarizes the most important changes in mitochondrial dynamics that come from neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's and Amyotrophic Lateral Sclerosis. Finally, we discussed about novel techniques that can potentially treat mitochondrial malfunction and oxidative stress in four most dominating neuro disorders.
中枢神经系统中的错误折叠蛋白可诱导氧化损伤,从而导致线粒体中的神经退行性疾病。神经退行性疾病患者很早就存在线粒体功能障碍,影响能量利用。淀粉样蛋白-β和 tau 问题都对线粒体有影响,导致线粒体功能障碍,最终导致阿尔茨海默病的发生。细胞与氧气相互作用会在线粒体中产生活性氧,从而导致线粒体成分的氧化损伤。帕金森病与氧化应激、α-突触核蛋白聚集和炎症有关,是由于大脑线粒体活性降低引起的。线粒体动力学通过不同的致病机制深刻影响细胞凋亡。亨廷顿病的特征是多聚谷氨酰胺的扩展,主要影响大脑皮层和纹状体。研究已经确定线粒体衰竭是导致 HD 选择性神经退行性变的早期致病机制之一。线粒体是通过经历片段化和融合过程来实现最佳生物能量效率的动态细胞器。它们还可以沿着微管运输,并通过与内质网的相互作用调节细胞内钙稳态。此外,线粒体还会产生自由基。真核细胞的功能,特别是神经元的功能,已经大大偏离了传统的细胞能量产生作用。其中大多数在 HD 中受损,这可能导致在症状出现之前神经元功能障碍。本文总结了包括阿尔茨海默病、帕金森病、亨廷顿病和肌萎缩侧索硬化症在内的神经退行性疾病中线粒体动力学的最重要变化。最后,我们讨论了一些新的技术,这些技术可能潜在地治疗四种最主要的神经疾病中的线粒体功能障碍和氧化应激。
Free Radic Biol Med. 2013-4-6
Transl Neurodegener. 2022-7-4
Int J Mol Sci. 2019-11-30
Biosci Rep. 2007-6
Int J Mol Sci. 2020-9-28
Chem Res Toxicol. 2008-1
Mol Neurobiol. 2025-8-16
MedComm (2020). 2025-7-1
Mol Biol Rep. 2025-6-26
Medicine (Baltimore). 2025-6-20
Neural Regen Res. 2025-6-19