Suppr超能文献

Fitbit Charge 3 和活动记录仪与多导睡眠图的性能评估:参与者和夜间的敏感性、特异性和可靠性。

Performance evaluation of Fitbit Charge 3 and actigraphy vs. polysomnography: Sensitivity, specificity, and reliability across participants and nights.

机构信息

Cognitive and Brain Sciences Department, Ben Gurion University, Be'er Sheva, Israel; Azrieli National Centre for Autism and Neurodevelopment Research, Be'er Sheva, Israel.

Department of Psychology, Ben Gurion University, Be'er Sheva, Israel.

出版信息

Sleep Health. 2023 Aug;9(4):407-416. doi: 10.1016/j.sleh.2023.04.001. Epub 2023 Jun 1.

Abstract

GOAL AND AIMS

Compare the accuracy and reliability of sleep/wake classification between the Fitbit Charge 3 and the Micro Motionlogger actigraph when applying either the Cole-Kripke or Sadeh scoring algorithms. Accuracy was established relative to simultaneous Polysomnography recording. Focus technology: Fitbit Charge 3 and actigraphy. Reference technology: Polysomnography.

SAMPLE

Twenty-one university students (10 females).

DESIGN

Simultaneous Fitbit Charge 3, actigraphy, and polysomnography were recorded over 3 nights at the participants' homes.

CORE ANALYTICS

Total sleep time, wake after sleep onset, sensitivity, specificity, positive predictive value, and negative predictive value.

ADDITIONAL ANALYTICS AND EXPLORATORY ANALYSES

Variability of specificity and negative predictive value across subjects and across nights.

CORE OUTCOMES

Fitbit Charge 3 and actigraphy using the Cole-Kripke or Sadeh algorithms exhibited similar sensitivity in classifying sleep segments relative to polysomnography (sensitivity of 0.95, 0.96, and 0.95, respectively). Fitbit Charge 3 was significantly more accurate in classifying wake segments (specificity of 0.69, 0.33, and 0.29, respectively). Fitbit Charge 3 also exhibited significantly higher positive predictive value than actigraphy (0.99 vs. 0.97 and 0.97, respectively) and a negative predictive value that was significantly higher only relative to the Sadeh algorithm (0.41 vs. 0.25, respectively).

IMPORTANT ADDITIONAL OUTCOMES

Fitbit Charge 3 exhibited significantly lower standard deviation in specificity values across subjects and negative predictive value across nights.

CORE CONCLUSION

This study demonstrates that Fitbit Charge 3 is more accurate and reliable in identifying wake segments than the examined FDA-approved Micro Motionlogger actigraphy device. The results also highlight the need to create devices that record and save raw multi-sensor data, which are necessary for developing open-source sleep or wake classification algorithms.

摘要

目的和目标

应用科勒-克里普克(Cole-Kripke)或萨德(Sadeh)评分算法时,比较 Fitbit Charge 3 和微运动记录仪活动计在睡眠/觉醒分类中的准确性和可靠性。准确性是相对于同时进行的多导睡眠图记录来确定的。关注技术:Fitbit Charge 3 和活动计。参考技术:多导睡眠图。

样本

21 名大学生(10 名女性)。

设计

参与者在家中连续 3 晚同时记录 Fitbit Charge 3、活动计和多导睡眠图。

核心分析

总睡眠时间、睡眠后觉醒时间、敏感性、特异性、阳性预测值和阴性预测值。

附加分析和探索性分析

特异性和阴性预测值在个体和夜间之间的变异性。

核心结果

使用科勒-克里普克或萨德算法的 Fitbit Charge 3 和活动计在分类睡眠片段方面与多导睡眠图相比具有相似的敏感性(敏感性分别为 0.95、0.96 和 0.95)。Fitbit Charge 3 在分类觉醒片段方面准确性显著更高(特异性分别为 0.69、0.33 和 0.29)。Fitbit Charge 3 的阳性预测值也显著高于活动计(分别为 0.99 比 0.97 和 0.97),且仅相对于 Sadeh 算法具有更高的阴性预测值(分别为 0.41 比 0.25)。

重要的附加结果

Fitbit Charge 3 在个体间特异性值和夜间间阴性预测值的标准差均显著降低。

核心结论

本研究表明,与所检查的经 FDA 批准的微运动记录仪活动计设备相比,Fitbit Charge 3 更准确、可靠地识别觉醒片段。研究结果还强调了开发记录和保存原始多传感器数据的设备的必要性,这对于开发开源睡眠或觉醒分类算法至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验