Cognitive and Brain Sciences Department, Ben Gurion University, Be'er Sheva, Israel; Azrieli National Centre for Autism and Neurodevelopment Research, Be'er Sheva, Israel.
Department of Psychology, Ben Gurion University, Be'er Sheva, Israel.
Sleep Health. 2023 Aug;9(4):407-416. doi: 10.1016/j.sleh.2023.04.001. Epub 2023 Jun 1.
Compare the accuracy and reliability of sleep/wake classification between the Fitbit Charge 3 and the Micro Motionlogger actigraph when applying either the Cole-Kripke or Sadeh scoring algorithms. Accuracy was established relative to simultaneous Polysomnography recording. Focus technology: Fitbit Charge 3 and actigraphy. Reference technology: Polysomnography.
Twenty-one university students (10 females).
Simultaneous Fitbit Charge 3, actigraphy, and polysomnography were recorded over 3 nights at the participants' homes.
Total sleep time, wake after sleep onset, sensitivity, specificity, positive predictive value, and negative predictive value.
Variability of specificity and negative predictive value across subjects and across nights.
Fitbit Charge 3 and actigraphy using the Cole-Kripke or Sadeh algorithms exhibited similar sensitivity in classifying sleep segments relative to polysomnography (sensitivity of 0.95, 0.96, and 0.95, respectively). Fitbit Charge 3 was significantly more accurate in classifying wake segments (specificity of 0.69, 0.33, and 0.29, respectively). Fitbit Charge 3 also exhibited significantly higher positive predictive value than actigraphy (0.99 vs. 0.97 and 0.97, respectively) and a negative predictive value that was significantly higher only relative to the Sadeh algorithm (0.41 vs. 0.25, respectively).
Fitbit Charge 3 exhibited significantly lower standard deviation in specificity values across subjects and negative predictive value across nights.
This study demonstrates that Fitbit Charge 3 is more accurate and reliable in identifying wake segments than the examined FDA-approved Micro Motionlogger actigraphy device. The results also highlight the need to create devices that record and save raw multi-sensor data, which are necessary for developing open-source sleep or wake classification algorithms.
应用科勒-克里普克(Cole-Kripke)或萨德(Sadeh)评分算法时,比较 Fitbit Charge 3 和微运动记录仪活动计在睡眠/觉醒分类中的准确性和可靠性。准确性是相对于同时进行的多导睡眠图记录来确定的。关注技术:Fitbit Charge 3 和活动计。参考技术:多导睡眠图。
21 名大学生(10 名女性)。
参与者在家中连续 3 晚同时记录 Fitbit Charge 3、活动计和多导睡眠图。
总睡眠时间、睡眠后觉醒时间、敏感性、特异性、阳性预测值和阴性预测值。
特异性和阴性预测值在个体和夜间之间的变异性。
使用科勒-克里普克或萨德算法的 Fitbit Charge 3 和活动计在分类睡眠片段方面与多导睡眠图相比具有相似的敏感性(敏感性分别为 0.95、0.96 和 0.95)。Fitbit Charge 3 在分类觉醒片段方面准确性显著更高(特异性分别为 0.69、0.33 和 0.29)。Fitbit Charge 3 的阳性预测值也显著高于活动计(分别为 0.99 比 0.97 和 0.97),且仅相对于 Sadeh 算法具有更高的阴性预测值(分别为 0.41 比 0.25)。
Fitbit Charge 3 在个体间特异性值和夜间间阴性预测值的标准差均显著降低。
本研究表明,与所检查的经 FDA 批准的微运动记录仪活动计设备相比,Fitbit Charge 3 更准确、可靠地识别觉醒片段。研究结果还强调了开发记录和保存原始多传感器数据的设备的必要性,这对于开发开源睡眠或觉醒分类算法至关重要。