Suppr超能文献

产甲烷古菌 ANME-2 厌氧甲烷营养菌的乙酸盐和乙酰辅酶 A 代谢。

Acetate and Acetyl-CoA Metabolism of ANME-2 Anaerobic Archaeal Methanotrophs.

机构信息

Radboud Institute of Biological and Environmental Sciences, Microbiology Cluster, Radboud University, Nijmegen, Netherlands.

Soehngen Institute of Anaerobic Microbiology, Nijmegen, Netherlands.

出版信息

Appl Environ Microbiol. 2023 Jun 28;89(6):e0036723. doi: 10.1128/aem.00367-23. Epub 2023 Jun 5.

Abstract

Acetyl-CoA synthetase (ACS) and acetate ligase (ACD) are widespread among microorganisms, including archaea, and play an important role in their carbon metabolism, although only a few of these enzymes have been characterized. Anaerobic methanotrophs (ANMEs) have been reported to convert methane anaerobically into CO, polyhydroxyalkanoate, and acetate. Furthermore, it has been suggested that they might be able to use acetate for anabolism or aceticlastic methanogenesis. To better understand the potential acetate metabolism of ANMEs, we characterized an ACS from ANME-2a as well as an ACS and an ACD from ANME-2d. The conversion of acetate into acetyl-CoA ( of 8.4 μmol mg min and of 0.7 mM acetate) by the monomeric 73.8-kDa ACS enzyme from ANME-2a was more favorable than the formation of acetate from acetyl-CoA ( of 0.4 μmol mg min and of 0.2 mM acetyl-CoA). The monomeric 73.4-kDa ACS enzyme from ANME-2d had similar values for both directions ( of 0.9 μmol mg min versus of 0.3 μmol mg min). The heterotetrameric ACD enzyme from ANME-2d was active solely in the acetate-producing direction. Batch incubations of an enrichment culture dominated by ANME-2d fed with C-labeled acetate produced 3 μmol of [C]methane in 7 days, suggesting that this anaerobic methanotroph might have the potential to reverse its metabolism and perform aceticlastic methanogenesis using ACS to activate acetate albeit at low rates (2 nmol g [dry weight] min). Together, these results show that ANMEs may have the potential to use acetate for assimilation as well as to use part of the surplus acetate for methane production. Acetyl-CoA plays a key role in carbon metabolism and is found at the junction of many anabolic and catabolic reactions. This work describes the biochemical properties of ACS and ACD enzymes from ANME-2 archaea. This adds to our knowledge of archaeal ACS and ACD enzymes, only a few of which have been characterized to date. Furthermore, we validated the activity of ACS in ANME-2d, showing the conversion of acetate into methane by an enrichment culture dominated by ANME-2d.

摘要

乙酰辅酶 A 合成酶 (ACS) 和乙酸连接酶 (ACD) 在微生物中广泛存在,包括古菌,它们在微生物的碳代谢中发挥着重要作用,尽管这些酶只有少数被鉴定出来。已经报道了厌氧甲烷营养菌 (ANME) 能够将甲烷厌氧转化为 CO、多羟基烷酸酯和乙酸。此外,有人认为它们可能能够利用乙酸进行同化或乙酸裂解产甲烷。为了更好地理解 ANME 的潜在乙酸代谢,我们对 ANME-2a 的 ACS 以及 ANME-2d 的 ACS 和 ACD 进行了表征。单体 73.8 kDa 的 ACS 酶将乙酸转化为乙酰辅酶 A(8.4 μmol mg−1 min−1,0.7 mM 乙酸)的转化率高于乙酰辅酶 A 生成乙酸的转化率(0.4 μmol mg−1 min−1,0.2 mM 乙酰辅酶 A)。来自 ANME-2d 的单体 73.4 kDa 的 ACS 酶在两个方向上都具有相似的值(0.9 μmol mg−1 min−1对 0.3 μmol mg−1 min−1)。来自 ANME-2d 的异四聚体 ACD 酶仅在产生乙酸的方向上具有活性。用 C 标记的乙酸喂养的以 ANME-2d 为主的富集培养物的分批孵育在 7 天内产生了 3 μmol [C]甲烷,这表明这种厌氧甲烷营养菌可能有潜力通过 ACS 来激活乙酸,从而逆转其代谢并进行乙酸裂解产甲烷,尽管速率较低(2 nmol g [干重] min)。总之,这些结果表明,ANME 可能有潜力将乙酸用于同化,以及将部分多余的乙酸用于甲烷生产。乙酰辅酶 A 在碳代谢中起着关键作用,存在于许多合成代谢和分解代谢反应的交汇点。本工作描述了来自 ANME-2 古菌的 ACS 和 ACD 酶的生化特性。这增加了我们对古菌 ACS 和 ACD 酶的认识,迄今为止只有少数几种被鉴定出来。此外,我们验证了 ANME-2d 中的 ACS 活性,通过以 ANME-2d 为主的富集培养物将乙酸转化为甲烷。

相似文献

1
Acetate and Acetyl-CoA Metabolism of ANME-2 Anaerobic Archaeal Methanotrophs.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0036723. doi: 10.1128/aem.00367-23. Epub 2023 Jun 5.
2
Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis.
Appl Microbiol Biotechnol. 2016 Jul;100(14):6481-6490. doi: 10.1007/s00253-016-7475-y. Epub 2016 Mar 30.
4
Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea.
Nat Commun. 2020 Aug 7;11(1):3941. doi: 10.1038/s41467-020-17860-8.
5
Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
Archaea. 2017 Jan 5;2017:1654237. doi: 10.1155/2017/1654237. eCollection 2017.
6
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.
Nature. 2013 Aug 29;500(7464):567-70. doi: 10.1038/nature12375. Epub 2013 Jul 28.
7
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02638-18. Print 2019 Apr 1.
8
Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs).
FEMS Microbiol Lett. 2009 Aug;297(1):31-7. doi: 10.1111/j.1574-6968.2009.01648.x. Epub 2009 May 9.
9
Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.
Microb Ecol. 2017 Oct;74(3):608-622. doi: 10.1007/s00248-017-0978-y. Epub 2017 Apr 7.
10
Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.
Environ Microbiol. 2011 Sep;13(9):2548-64. doi: 10.1111/j.1462-2920.2011.02526.x. Epub 2011 Aug 2.

引用本文的文献

2
A non-methanogenic archaeon within the order Methanocellales.
Nat Commun. 2024 Jun 13;15(1):4858. doi: 10.1038/s41467-024-48185-5.
3
Respiration-driven methanotrophic growth of diverse marine methanogens.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2303179120. doi: 10.1073/pnas.2303179120. Epub 2023 Sep 20.

本文引用的文献

1
A widespread group of large plasmids in methanotrophic Methanoperedens archaea.
Nat Commun. 2022 Nov 18;13(1):7085. doi: 10.1038/s41467-022-34588-9.
2
Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium.
Water Res. 2022 Aug 1;221:118743. doi: 10.1016/j.watres.2022.118743. Epub 2022 Jun 13.
3
Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors.
Adv Microb Physiol. 2022;80:157-201. doi: 10.1016/bs.ampbs.2022.01.003. Epub 2022 Feb 18.
4
ANME-1 archaea may drive methane accumulation and removal in estuarine sediments.
Environ Microbiol Rep. 2021 Apr;13(2):185-194. doi: 10.1111/1758-2229.12926. Epub 2021 Jan 18.
5
Investigation of central energy metabolism-related protein complexes of ANME-2d methanotrophic archaea by complexome profiling.
Biochim Biophys Acta Bioenerg. 2021 Jan 1;1862(1):148308. doi: 10.1016/j.bbabio.2020.148308. Epub 2020 Sep 28.
6
Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea.
Nat Commun. 2020 Aug 7;11(1):3941. doi: 10.1038/s41467-020-17860-8.
7
Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae.
ISME J. 2020 Apr;14(4):1030-1041. doi: 10.1038/s41396-020-0590-x. Epub 2020 Jan 27.
8
Acetate Production from Anaerobic Oxidation of Methane via Intracellular Storage Compounds.
Environ Sci Technol. 2019 Jul 2;53(13):7371-7379. doi: 10.1021/acs.est.9b00077. Epub 2019 Jun 18.
9
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.
10
A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction.
ISME J. 2018 Aug;12(8):1929-1939. doi: 10.1038/s41396-018-0109-x. Epub 2018 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验