Suppr超能文献

厌氧甲烷氧化古菌的代谢潜力可用于广泛的电子受体。

Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors.

机构信息

Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

出版信息

Adv Microb Physiol. 2022;80:157-201. doi: 10.1016/bs.ampbs.2022.01.003. Epub 2022 Feb 18.

Abstract

Methane (CH) is a potent greenhouse gas significantly contributing to the climate warming we are currently facing. Microorganisms play an important role in the global CH cycle that is controlled by the balance between anaerobic production via methanogenesis and CH removal via methanotrophic oxidation. Research in recent decades advanced our understanding of CH oxidation, which until 1976 was believed to be a strictly aerobic process. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is now known to be an important sink of CH in marine ecosystems. Furthermore, in 2006 it was discovered that anaerobic CH oxidation can also be coupled to nitrate reduction (N-DAMO), demonstrating that AOM may be much more versatile than previously thought and linked to other electron acceptors. In consequence, an increasing number of studies in recent years showed or suggested that alternative electron acceptors can be used in the AOM process including Fe, Mn, As, Cr, Se, Sb, V, and Br. In addition, humic substances as well as biochar and perchlorate (ClO) were suggested to mediate AOM. Anaerobic methanotrophic archaea, the so-called ANME archaea, are key players in the AOM process, yet we are still lacking deeper understanding of their metabolism, electron acceptor preferences and their interaction with other microbial community members. It is still not clear whether ANME archaea can oxidize CH and reduce metallic electron acceptors independently or via electron transfer to syntrophic partners, interspecies electron transfer, nanowires or conductive pili. Therefore, the aim of this review is to summarize and discuss the current state of knowledge about ANME archaea, focusing on their physiology, metabolic flexibility and potential to use various electron acceptors.

摘要

甲烷(CH)是一种强效温室气体,对我们目前面临的气候变暖有重要影响。微生物在全球 CH 循环中发挥着重要作用,该循环受产甲烷作用的厌氧生成和甲烷营养型氧化作用去除 CH 之间的平衡所控制。近几十年来的研究增进了我们对 CH 氧化的理解,直到 1976 年,人们还认为这是一个严格的需氧过程。现在已知甲烷的厌氧氧化(AOM)与硫酸盐还原偶联是海洋生态系统中 CH 的一个重要汇。此外,2006 年发现,甲烷的厌氧氧化也可以与硝酸盐还原(N-DAMO)偶联,表明 AOM 可能比以前认为的更为多样,并与其他电子受体有关。因此,近年来越来越多的研究表明或暗示,替代电子受体可用于 AOM 过程,包括 Fe、Mn、As、Cr、Se、Sb、V 和 Br。此外,腐殖质以及生物炭和高氯酸盐(ClO)被认为可以介导 AOM。厌氧甲烷营养古菌,即所谓的 ANME 古菌,是 AOM 过程中的关键参与者,但我们仍然缺乏对其代谢、电子受体偏好以及与其他微生物群落成员相互作用的更深入了解。目前还不清楚 ANME 古菌是否可以独立地或通过电子转移给共生伙伴、种间电子转移、纳米线或导电菌毛氧化 CH 和还原金属电子受体。因此,本综述的目的是总结和讨论关于 ANME 古菌的现有知识状态,重点关注其生理学、代谢灵活性以及利用各种电子受体的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验