Suppr超能文献

带惩罚项的样本级联合缺失效应模型。

Sample-wise Combined Missing Effect Model with Penalization.

作者信息

Li Jialu, Yu Guan, Li Qizhai, Liu Yufeng

机构信息

School of Mathematics and Statistics, Beijing Institute of Technology.

Department of Biostatistics, State University of New York at Buffalo.

出版信息

J Comput Graph Stat. 2023;32(1):263-274. doi: 10.1080/10618600.2022.2070172. Epub 2022 May 26.

Abstract

Modern high-dimensional statistical inference often faces the problem of missing data. In recent decades, many studies have focused on this topic and provided strategies including complete-sample analysis and imputation procedures. However, complete-sample analysis discards information of incomplete samples, while imputation procedures have accumulative errors from each single imputation. In this paper, we propose a new method, Sample-wise COmbined missing effect Model with penalization (SCOM), to deal with missing data occurring in predictors. Instead of imputing the predictors, SCOM estimates the combined effect caused by all missing data for each incomplete sample. SCOM makes full use of all available data. It is robust with respect to various missing mechanisms. Theoretical studies show the oracle inequality for the proposed estimator, and the consistency of variable selection and combined missing effect selection. Simulation studies and an application to the Residential Building Data also illustrate the effectiveness of the proposed SCOM.

摘要

现代高维统计推断常常面临数据缺失问题。近几十年来,许多研究都聚焦于该主题,并提供了包括完全样本分析和插补程序在内的策略。然而,完全样本分析会丢弃不完全样本的信息,而插补程序每次单独插补都会产生累积误差。在本文中,我们提出了一种新方法——带惩罚的样本明智组合缺失效应模型(SCOM),以处理预测变量中出现的数据缺失问题。SCOM不是对预测变量进行插补,而是估计每个不完全样本中所有缺失数据所造成的组合效应。SCOM充分利用了所有可用数据。它对于各种缺失机制都具有稳健性。理论研究表明了所提出估计量的神谕不等式,以及变量选择和组合缺失效应选择的一致性。模拟研究以及在住宅建筑数据中的应用也说明了所提出的SCOM的有效性。

相似文献

1
Sample-wise Combined Missing Effect Model with Penalization.带惩罚项的样本级联合缺失效应模型。
J Comput Graph Stat. 2023;32(1):263-274. doi: 10.1080/10618600.2022.2070172. Epub 2022 May 26.
3
Multiple imputation with sequential penalized regression.多重插补与序贯惩罚回归。
Stat Methods Med Res. 2019 May;28(5):1311-1327. doi: 10.1177/0962280218755574. Epub 2018 Feb 16.

本文引用的文献

2
Structured Matrix Completion with Applications to Genomic Data Integration.结构化矩阵补全及其在基因组数据整合中的应用
J Am Stat Assoc. 2016;111(514):621-633. doi: 10.1080/01621459.2015.1021005. Epub 2016 Aug 18.
4
MissForest--non-parametric missing value imputation for mixed-type data.MissForest--用于混合类型数据的非参数缺失值插补。
Bioinformatics. 2012 Jan 1;28(1):112-8. doi: 10.1093/bioinformatics/btr597. Epub 2011 Oct 28.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验